Application of Nanotechnology in Biomedicine: A Major Focus on Cancer Therapy

Article Preview

Abstract:

Most of mortality worldwide occurs because of cancer diseases. Nanostructures are the new compounds that have become one of the most important technologies for using in different fields over the past two years especially in medicine. In between, nanotechnology has the potential to cancer detection and therapy. This study is a review of prospects in applications of nano-materials for cancer detection and treatment. We have summarized the nano-materials (metal nanospheres, nanorods, nanoshells and nanotubes) in medical applications targeting cancer. We also discuss advances in established nanoparticle technologies such as liposomes, polymer micelles, and functionalization about tumor targeting, controlled release and drug delivery. This paper will discuss the therapeutic applications of different nano-materials with a major focus on their applications for the treatment of cancer. Briefly, the toxicity of conventional nanostructures was also mentioned in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-66

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] Allen, N.S., et al., Antioxidant capacity of novel amine derivatives of buckminsterfullerene: Determination of inhibition rate constants in a model oxidation system. Polymer Degradation and Stability, 2009. 94(11): p.1932-(1940).

DOI: 10.1016/j.polymdegradstab.2009.08.002

Google Scholar

[2] Wudl, F. and J.D. Thompson, Buckminsterfullerene C60 and organic ferromagnetism. Journal of Physics and Chemistry of Solids, 1992. 53(11): pp.1449-1455.

DOI: 10.1016/0022-3697(92)90238-9

Google Scholar

[3] Yang, S.H., et al., Ups of buckminsterfullerene and other large clusters of carbon. Chemical Physics Letters, 1987. 139(3–4): pp.233-238.

DOI: 10.1016/0009-2614(87)80548-1

Google Scholar

[4] Haaheim, J., et al., Dip Pen Nanolithography (DPN): process and instrument performance with NanoInk's Nscriptor system. Ultramicroscopy, 2005. 103(2): pp.117-132.

DOI: 10.1016/j.ultramic.2004.11.015

Google Scholar

[5] Bullen, D. and C. Liu, Electrostatically actuated dip pen nanolithography probe arrays. Sensors and Actuators A: Physical, 2006. 125(2): pp.504-511.

DOI: 10.1016/j.sna.2005.09.001

Google Scholar

[6] Li, B., et al., Fabricating protein nanopatterns on a single DNA molecule with Dip-pen nanolithography. Ultramicroscopy, 2005. 105(1–4): pp.312-315.

DOI: 10.1016/j.ultramic.2005.06.056

Google Scholar

[7] Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA Cancer J Clin, 2015. 65(1): pp.5-29.

Google Scholar

[8] Aguilar, Z.P., Chapter 1 - Introduction, in Nanomaterials for Medical Applications, A. Zoraida, Editor. 2013, Elsevier. pp.1-32.

Google Scholar

[9] Sahoo, S.K., S. Parveen, and J.J. Panda, The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 3(1): pp.20-31.

DOI: 10.1016/j.nano.2006.11.008

Google Scholar

[10] Horton, M.A. and A. Khan, Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology. Nanomedicine: Nanotechnology, Biology and Medicine, 2006. 2(1): pp.42-48.

DOI: 10.1016/j.nano.2005.12.001

Google Scholar

[11] Subramani, K. and W. Ahmed, Chapter 1 - Nanotechnology and the Future of Dentistry, in Emerging Nanotechnologies in Dentistry. 2012, William Andrew Publishing: Boston. pp.1-14.

DOI: 10.1016/b978-1-4557-7862-1.00001-8

Google Scholar

[12] Koo, O.M., I. Rubinstein, and H. Onyuksel, Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 2005. 1(3): pp.193-212.

DOI: 10.1016/j.nano.2005.06.004

Google Scholar

[13] Kim, K.Y., Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 3(2): pp.103-110.

DOI: 10.1016/j.nano.2006.12.002

Google Scholar

[14] Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. nature, 1993. 363(0): pp.603-605.

DOI: 10.1038/363603a0

Google Scholar

[15] Benniston, A.C. and P.R. Mackie, Chapter 4 - Functional nanostructures incorporating responsive modules, in Handbook of Nanostructured Materials and Nanotechnology, N. Hari Singh, M. Sc, and M.S.P.D. Ph.D. A2 - Hari Singh Nalwa, Editors. 2000, Academic Press: Burlington. pp.277-331.

DOI: 10.1016/b978-012513760-7/50056-3

Google Scholar

[16] Rebolj, D., et al., Can we grow buildings? Concepts and requirements for automated nano- to meter-scale building. Advanced Engineering Informatics, 2011. 25(2): pp.390-398.

DOI: 10.1016/j.aei.2010.08.006

Google Scholar

[17] Curl, R.F., Obituary: Richard E. Smalley (1943-2005). Nature, 2005. 438(7071): pp.1094-1094.

DOI: 10.1038/4381094a

Google Scholar

[18] Klaine, S.J., et al., Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 2008. 27(9): pp.1825-1851.

Google Scholar

[19] Nowack, B. and T.D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 2007. 150(1): pp.5-22.

DOI: 10.1016/j.envpol.2007.06.006

Google Scholar

[20] Kroto, H.W., et al., C60: Buckminsterfullerene. Nature, 1985. 318(6042): pp.162-163.

Google Scholar

[21] Palmer, D.J., Where nano is going. Nano Today, 2008. 3(5–6): pp.46-47.

DOI: 10.1016/s1748-0132(08)70099-9

Google Scholar

[22] Roy, D., et al., Directly writing with nanoparticles at the nanoscale using dip-pen nanolithography. Applied Surface Science, 2007. 254(5): pp.1394-1398.

DOI: 10.1016/j.apsusc.2007.06.058

Google Scholar

[23] Thompson, D.G., et al., Microscale mesoarrays created by dip-pen nanolithography for screening of protein–protein interactions. Biosensors and Bioelectronics, 2011. 26(12): pp.4667-4673.

DOI: 10.1016/j.bios.2011.04.040

Google Scholar

[24] Son, J.Y., Y. -S. Shin, and Y. -H. Shin, Nanoscale resistive random access memory consisting of a NiO nanodot and Au nanowires formed by dip-pen nanolithography. Applied Surface Science, 2011. 257(23): pp.9885-9887.

DOI: 10.1016/j.apsusc.2011.06.076

Google Scholar

[25] Bangham, A.D. and R.W. Horne, Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology, 1964. 8(5): p.660-IN10.

DOI: 10.1016/s0022-2836(64)80115-7

Google Scholar

[26] Finean, J.B. and M.G. Rumsby, Negatively Stained Lipoprotein Membranes. Nature, 1963. 200(4913): pp.1340-1340.

DOI: 10.1038/2001340b0

Google Scholar

[27] Glauert, A.M., J.T. Dingle, and J.A. Lucy, Action of Saponin on Biological Cell Membranes. Nature, 1962. 196(4858): pp.953-955.

DOI: 10.1038/196953a0

Google Scholar

[28] Shoji, Y. and H. Nakashima, Nutraceutics and Delivery Systems. Journal of Drug Targeting, 2004. 12(6): pp.385-391.

DOI: 10.1080/10611860400003817

Google Scholar

[29] Drummond, D.C., et al., Optimizing Liposomes for Delivery of Chemotherapeutic Agents to Solid Tumors. Pharmacological Reviews, 1999. 51(4): pp.691-744.

Google Scholar

[30] Cagnoni, P.J., Liposomal amphotericin B versus conventional amphotericin B in the empirical treatment of persistently febrile neutropenic patients. Journal of Antimicrobial Chemotherapy, 2002. 49(suppl 1): pp.81-86.

DOI: 10.1093/jac/49.suppl_1.81

Google Scholar

[31] Woodle, M.C. and D.D. Lasic, Sterically stabilized liposomes. Biochimica et biophysica acta, 1992. 1113(2): pp.171-199.

DOI: 10.1016/0304-4157(92)90038-c

Google Scholar

[32] Bailey, R.E., A.M. Smith, and S. Nie, Quantum dots in biology and medicine. Physica E: Low-dimensional Systems and Nanostructures, 2004. 25(1): pp.1-12.

DOI: 10.1016/j.physe.2004.07.013

Google Scholar

[33] Medintz, I.L., H. Mattoussi, and A.R. Clapp, Potential clinical applications of quantum dots. International Journal of Nanomedicine, 2008. 3(2): pp.151-167.

Google Scholar

[34] Jin, S., et al., Application of Quantum Dots in Biological Imaging. Journal of Nanomaterials, 2011. 2011: p.13.

Google Scholar

[35] Khdair, A., et al., Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. Journal of Controlled Release, 2010. 141(2): pp.137-144.

DOI: 10.1016/j.jconrel.2009.09.004

Google Scholar

[36] Khdair, A., et al., Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2009. 71(2): pp.214-222.

DOI: 10.1016/j.ejpb.2008.08.017

Google Scholar

[37] Song, M., et al., The in vitro inhibition of multidrug resistance by combined nanoparticulate titanium dioxide and UV irradition. Biomaterials, 2006. 27(23): pp.4230-4238.

DOI: 10.1016/j.biomaterials.2006.03.021

Google Scholar

[38] Tang, M.F., et al., Recent progress in nanotechnology for cancer therapy. Chinese journal of cancer, 2010. 29(9): pp.775-780.

Google Scholar

[39] Ali, I., et al., Advances in nano drugs for cancer chemotherapy. Current cancer drug targets, 2011. 11(2): pp.135-146.

Google Scholar

[40] Hariharan, R., et al., Synthesis and characterization of daunorubicin modified ZnO/PVP nanorods and its photodynamic action. Journal of Photochemistry and Photobiology A: Chemistry, 2013. 252(0): pp.107-115.

DOI: 10.1016/j.jphotochem.2012.11.017

Google Scholar

[41] Ng, K.W., et al., The role of the tumor suppressor p.53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials, 2011. 32(32): pp.8218-8225.

DOI: 10.1016/j.biomaterials.2011.07.036

Google Scholar

[42] Hackenberg, S., et al., Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. Journal of Photochemistry and Photobiology B: Biology, 2012. 114(0): pp.87-93.

DOI: 10.1016/j.jphotobiol.2012.05.014

Google Scholar

[43] Prach, M., V. Stone, and L. Proudfoot, Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status. Toxicology and Applied Pharmacology, 2013. 266(1): pp.19-26.

DOI: 10.1016/j.taap.2012.10.020

Google Scholar

[44] Gabizon, A.A., Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Advanced Drug Delivery Reviews, 1995. 16(2–3): pp.285-294.

DOI: 10.1016/0169-409x(95)00030-b

Google Scholar

[45] Yang, F., et al., Liposome based delivery systems in pancreatic cancer treatment: From bench to bedside. Cancer Treatment Reviews, 2011. 37(8): pp.633-642.

DOI: 10.1016/j.ctrv.2011.01.006

Google Scholar

[46] Gabizon, A., et al., Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Advanced Drug Delivery Reviews, 2004. 56(8): pp.1177-1192.

DOI: 10.1016/j.addr.2004.01.011

Google Scholar

[47] Franckena, M., et al., Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. European Journal of Cancer, 2009. 45(11): p.1969-(1978).

DOI: 10.1016/j.ejca.2009.03.009

Google Scholar

[48] Chicheł, A., et al., Hyperthermia – description of a method and a review of clinical applications. Reports of Practical Oncology & Radiotherapy, 2007. 12(5): pp.267-275.

DOI: 10.1016/s1507-1367(10)60065-x

Google Scholar

[49] Kawasaki, E.S. and A. Player, Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 2005. 1(2): pp.101-109.

DOI: 10.1016/j.nano.2005.03.002

Google Scholar

[50] Malshe, A. and D. Deshpande, Nano and microscale surface and sub-surface modifications induced in optical materials by femtosecond laser machining. Journal of Materials Processing Technology, 2004. 149(1–3): pp.585-590.

DOI: 10.1016/j.jmatprotec.2003.11.050

Google Scholar

[51] Loh, K. and S. Chua, Zinc Oxide Nanorod Arrays: Properties and Hydrothermal Synthesis, in Molecular Building Blocks for Nanotechnology, G.A. Mansoori, et al., Editors. 2007, Springer New York. pp.92-117.

DOI: 10.1007/978-0-387-39938-6_6

Google Scholar

[52] Patel, S.P., P.B. Patel, and B.B. Parekh, Application of nanotechnology in cancers prevention, early detection and treatment. J Cancer Res Ther, 2014. 10(3): pp.479-86.

DOI: 10.4103/0973-1482.138196

Google Scholar

[53] Wang, X., et al., Application of Nanotechnology in Cancer Therapy and Imaging. CA: A Cancer Journal for Clinicians, 2008. 58(2): pp.97-110.

Google Scholar

[54] Mironidou-Tzouveleki, M., K. Imprialos, and A. Kintsakis, Nanotechnology in cancer treatment. 2011: pp.809917-809917.

DOI: 10.1117/12.898643

Google Scholar

[55] Sanna, V. and M. Sechi, Nanoparticle therapeutics for prostate cancer treatment. Maturitas, 2012. 73(1): pp.27-32.

DOI: 10.1016/j.maturitas.2012.01.016

Google Scholar

[56] Shi, D., et al., Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale, 2015. 7(18): pp.8209-8232.

DOI: 10.1039/c5nr01538c

Google Scholar

[57] Bechet, D., et al., Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in Biotechnology. 26(11): pp.612-621.

DOI: 10.1016/j.tibtech.2008.07.007

Google Scholar

[58] Wu, W., Q. He, and C. Jiang, Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Research Letters, 2008. 3(11): pp.397-415.

DOI: 10.1007/s11671-008-9174-9

Google Scholar

[59] Zhao, M. -X. and E. -Z. Zeng, Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Research Letters, 2015. 10: p.171.

DOI: 10.1186/s11671-015-0873-8

Google Scholar

[60] Cui, Y., et al., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001. 293(5533): pp.1289-92.

DOI: 10.1126/science.1062711

Google Scholar

[61] Cullum, B.M. and T. Vo-Dinh, The development of optical nanosensors for biological measurements. Trends Biotechnol, 2000. 18(9): pp.388-93.

DOI: 10.1016/s0167-7799(00)01477-3

Google Scholar

[62] Cullum, B.M. and T. Vo-Dinh, The development of optical nanosensors for biological measurements. Trends in Biotechnology. 18(9): pp.388-393.

DOI: 10.1016/s0167-7799(00)01477-3

Google Scholar

[63] Liao, J.C., et al., Use of Electrochemical DNA Biosensors for Rapid Molecular Identification of Uropathogens in Clinical Urine Specimens. Journal of Clinical Microbiology, 2006. 44(2): pp.561-570.

DOI: 10.1128/jcm.44.2.561-570.2006

Google Scholar

[64] Miao, X., et al., Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA. Biosens Bioelectron, 2014. 59: pp.54-7.

DOI: 10.1016/j.bios.2014.03.009

Google Scholar

[65] Kara, P., et al., Electrochemical DNA biosensor for the detection and discrimination of herpes simplex Type I and Type II viruses from PCR amplified real samples. Analytica Chimica Acta, 2004. 518(1–2): pp.69-76.

DOI: 10.1016/j.aca.2004.04.004

Google Scholar

[66] Arruebo, M., M. Valladares, and Á. González-Fernández, Antibody-Conjugated Nanoparticles for Biomedical Applications. Journal of Nanomaterials, 2009. 2009: p.24.

DOI: 10.1155/2009/439389

Google Scholar

[67] Prantner, A.M., C.V. Nguyen, and N. Scholler, Facile immunotargeting of nanoparticles against tumor antigens using site-specific biotinylated antibody fragments. J Biomed Nanotechnol, 2013. 9(10): pp.1686-97.

DOI: 10.1166/jbn.2013.1670

Google Scholar

[68] Xu, W., et al., Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys Chem Chem Phys, 2012. 14(37): pp.12687-700.

DOI: 10.1039/c2cp41357d

Google Scholar

[69] Lee, S.H., et al., Paramagnetic inorganic nanoparticles as T1MRI contrast agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014. 6(2): pp.196-209.

Google Scholar

[70] Tang, M.F., et al., Recent progress in nanotechnology for cancer therapy. Chin J Cancer, 2010. 29(9): pp.775-80.

Google Scholar

[71] Sutradhar, K.B. and M.L. Amin, Nanotechnology in Cancer Drug Delivery and Selective Targeting. ISRN Nanotechnology, 2014. 2014: p.12.

DOI: 10.1155/2014/939378

Google Scholar

[72] Shamsipour, F., et al., Conjugation of Monoclonal Antibodies to Super Paramagnetic Iron Oxide Nanoparticles for Detection of her2/neu Antigen on Breast Cancer Cell Lines. Avicenna Journal of Medical Biotechnology, 2009. 1(1): pp.27-31.

Google Scholar

[73] Ray, S., et al., Nanotechniques and Proteomics: An Integrated Platform for Diagnostics, Targeted Therapeutics and Personalized Medicine. Current Pharmacogenomics and Personalized Medicine, 2011. 9(4): pp.264-285.

DOI: 10.2174/187569211798377199

Google Scholar

[74] Criscione, J.M., et al., Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging. Bioconjugate chemistry, 2011. 22(9): pp.1784-1792.

DOI: 10.1021/bc200162r

Google Scholar

[75] Jaffray, D., et al., Compositions and Method for Multimodal Imaging. 2008, Google Patents.

Google Scholar

[76] McCarroll, J., et al., Potential applications of nanotechnology for the diagnosis and treatment of pancreatic cancer. Frontiers in Physiology, 2014. 5: p.2.

Google Scholar

[77] Wang, J., et al., More Effective Nanomedicines through Particle Design. Small (Weinheim an Der Bergstrasse, Germany), 2011. 7(14): p.1919-(1931).

Google Scholar

[78] Kumari, A., S.K. Yadav, and S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2010. 75(1): pp.1-18.

DOI: 10.1016/j.colsurfb.2009.09.001

Google Scholar

[79] Safari, J. and Z. Zarnegar, Advanced drug delivery systems: Nanotechnology of health design A review. Journal of Saudi Chemical Society, 2014. 18(2): pp.85-99.

DOI: 10.1016/j.jscs.2012.12.009

Google Scholar

[80] Suri, S.S., H. Fenniri, and B. Singh, Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology (London, England), 2007. 2: pp.16-16.

DOI: 10.1186/1745-6673-2-16

Google Scholar

[81] Petre, C.E. and D.P. Dittmer, Liposomal daunorubicin as treatment for Kaposi's sarcoma. International Journal of Nanomedicine, 2007. 2(3): pp.277-288.

Google Scholar

[82] Ghirmai, S., et al., Synthesis and radioiodination of some daunorubicin and doxorubicin derivatives. Carbohydrate Research, 2005. 340(1): pp.15-24.

DOI: 10.1016/j.carres.2004.10.014

Google Scholar

[83] Elbialy, N.S. and M.M. Mady, Ehrlich tumor inhibition using doxorubicin containing liposomes. Saudi Pharmaceutical Journal, 2015. 23(2): pp.182-187.

DOI: 10.1016/j.jsps.2014.07.003

Google Scholar

[84] Iqbal, J., et al., Influence of Mg doping level on morphology, optical, electrical properties and antibacterial activity of ZnO nanostructures. Ceramics International, 2014. 40(5): pp.7487-7493.

DOI: 10.1016/j.ceramint.2013.12.099

Google Scholar

[85] Wahab, R., et al., Effective inhibition of bacterial respiration and growth by CuO microspheres composed of thin nanosheets. Colloids and Surfaces B: Biointerfaces, 2013. 111(0): pp.211-217.

DOI: 10.1016/j.colsurfb.2013.06.003

Google Scholar

[86] Ramani, M., et al., Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 2014. 117(0): pp.233-239.

DOI: 10.1016/j.colsurfb.2014.02.017

Google Scholar

[87] Giri, S., 3 - Nanotoxicity: Aspects and Concerns in Biological Systems, in Microbial Biodegradation and Bioremediation, S. Das, Editor. 2014, Elsevier: Oxford. pp.55-83.

DOI: 10.1016/b978-0-12-800021-2.00003-0

Google Scholar

[88] de Azeredo, H.M.C., Antimicrobial nanostructures in food packaging. Trends in Food Science & Technology, 2013. 30(1): pp.56-69.

DOI: 10.1016/j.tifs.2012.11.006

Google Scholar

[89] Marion, L.L. and G.R. Meeks, Ectopic pregnancy: History, incidence, epidemiology, and risk factors. Clin Obstet Gynecol, 2012. 55(2): pp.376-86.

DOI: 10.1097/grf.0b013e3182516d7b

Google Scholar

[90] Aslan, S., et al., Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid). Nanoscale, 2010. 2(9): pp.1789-1794.

DOI: 10.1039/c0nr00329h

Google Scholar

[91] Brady-Estévez, A.S., S. Kang, and M. Elimelech, A Single-Walled-Carbon-Nanotube Filter for Removal of Viral and Bacterial Pathogens. Small, 2008. 4(4): pp.481-484.

DOI: 10.1002/smll.200700863

Google Scholar

[92] Kang, S., et al., Antibacterial Effects of Carbon Nanotubes: Size Does Matter! Langmuir, 2008. 24(13): pp.6409-6413.

DOI: 10.1021/la800951v

Google Scholar

[93] Varghese, S., S. Kuriakose, and S. Jose, Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria. Journal of Nanoscience, 2013. 2013: p.5.

DOI: 10.1155/2013/457865

Google Scholar

[94] Amiri, A., et al., Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Materials Letters, 2012. 72(0): pp.153-156.

DOI: 10.1016/j.matlet.2011.12.114

Google Scholar

[95] Zardini, H.Z., et al., Microbial toxicity of ethanolamines—Multiwalled carbon nanotubes. Journal of Biomedical Materials Research Part A, 2014. 102(6): pp.1774-1781.

DOI: 10.1002/jbm.a.34846

Google Scholar

[96] Zare-Zardini, H., et al., Studying of antifungal activity of functionalized multiwalled carbon nanotubes by microwave-assisted technique. Surface and Interface Analysis, 2013. 45(3): pp.751-755.

DOI: 10.1002/sia.5152

Google Scholar

[97] Zardini, H.Z., et al., Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids and Surfaces B: Biointerfaces, 2012. 92(0): pp.196-202.

DOI: 10.1016/j.colsurfb.2011.11.045

Google Scholar

[98] Amiri, A., H. Zare-Zardini, and M. Shanbedi, antimicrobial Polyvinyl chloride composite (patent). Industrial Property General Office-state organization for registration of deeds and properties, 2012. 74061(390040571).

Google Scholar

[99] Soleymani, S., et al., A Review of Toxicity of Some Conventional Nanomaterials. Journal of Pharmaceutical and Health Sciences, 2013. 2(1): pp.51-56.

Google Scholar