Nanoscale Engineering of Exciton Dissociating Interfaces in Organic Photovoltaics

Article Preview

Abstract:

Interfaces are inherent in and essential to organic electronic devices. At every interface, both organic/organic and organic/inorganic, the potential to utilize nanostructuring to control device performance is very high. In this paper, we focus on one example of nanostructuring at the donor/acceptor heterojunction in organic photovoltaics, with the purpose of modifing efficiency by four orders of magnitude. We show that the length of the exciton dissociating interface can be tuned by changing the substrate temperature for small molecule heterojunction photodiodes based on crystalline DIP/C60 mixtures. Due to the tuneable interface morphology, the performance of such devices can be changed from poor performing planar heterojunctions to higher efficiency ordered nanoscale bulk heterojunction structures. In this way, highly crystalline DIP can be thought of as a natural “bulk” heterojunction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-134

Citation:

Online since:

April 2011

Export:

Price:

[1] J. Nelson, Organic photovoltaic films, Curr Opin Solid St M 6 (2002) 87.

Google Scholar

[2] P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93 (2003) 3693.

DOI: 10.1063/1.1534621

Google Scholar

[3] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer Photovoltaic Cells - Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions, Science 270 (1995) 1789.

DOI: 10.1126/science.270.5243.1789

Google Scholar

[4] J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Efficient Photodiodes from Interpenetrating Polymer Networks, Nature 376 (1995) 498.

DOI: 10.1038/376498a0

Google Scholar

[5] N.S. Sariciftci, D. Braun, C. Zhang, V.I. Srdanov, A.J. Heeger, G. Stucky, F. Wudl, Semiconducting Polymer-Buckminsterfullerene Heterojunctions - Diodes, Photodiodes, and Photovoltaic Cells, Appl. Phys. Lett. 62 (1993) 585.

DOI: 10.1063/1.108863

Google Scholar

[6] G. Zerza, C.J. Brabec, G. Cerullo, S. De Silvestri, N.S. Sariciftci, Ultrafast charge transfer in conjugated polymer-fullerene composites, Synthetic Met. 119 (2001) 637.

DOI: 10.1016/s0379-6779(00)00909-7

Google Scholar

[7] P.A. van Hal, R.A.J. Janssen, G. Lanzani, G. Cerullo, M. Zavelani-Rossi, S. De Silvestri, Full temporal resolution of the two-step photoinduced energy-electron transfer in a fullerene-oligothiophene-fullerene triad using sub-10 fs pump-probe spectroscopy, Chem Phys Lett. 345 (2001).

DOI: 10.1016/s0009-2614(01)00874-0

Google Scholar

[8] H.J. Snaith, A.C. Arias, A.C. Morteani, C. Silva, R.H. Friend, Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices, Nano Lett. 2 (2002) 1353.

DOI: 10.1021/nl0257418

Google Scholar

[9] M. Hiramoto, T. Yamaga, M. Danno, K. Suemori, Y. Matsumura, M. Yokoyama, Design of nanostructures for photoelectric conversion using an organic vertical superlattice, Appl. Phys. Lett. 88 (2006) 213105.

DOI: 10.1063/1.2206124

Google Scholar

[10] M. Hiramoto, H. Fujiwara, M. Yokoyama, 3-Layered Organic Solar-Cell with a Photoactive Interlayer of Codeposited Pigments, Appl. Phys. Lett. 58 (1991) 1062.

DOI: 10.1063/1.104423

Google Scholar

[11] P. Peumans, S. Uchida, S.R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature 425 (2003) 158.

DOI: 10.1038/nature01949

Google Scholar

[12] D. Gebeyehu, B. Maennig, J. Drechsel, K. Leo, M. Pfeiffer, Bulk-heterojunction photovoltaic devices based on donor-acceptor organic small molecule blends, Sol Energ Mat Sol C 79 (2003) 81.

DOI: 10.1016/s0927-0248(02)00369-0

Google Scholar

[13] Y. Zheng, S.K. Pregler, J.D. Myers, J.M. Ouyang, S.B. Sinnott, J.G. Xue, Computational and experimental studies of phase separation in pentacene: C-60 mixtures, J Vac Sci Technol B 27 (2009) 169.

DOI: 10.1116/1.3072516

Google Scholar

[14] B.P. Rand, J. Genoe, P. Heremans, J. Poortmans, Solar cells utilizing small molecular weight organic semiconductors, Progress in Photovoltaics 15 (2007) 659.

DOI: 10.1002/pip.788

Google Scholar

[15] N. Li, S.R. Forrest, Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition, Appl. Phys. Lett. 95 (2009).

DOI: 10.1063/1.3236838

Google Scholar

[16] J. Zhang, I. Salzmann, S. Rogaschewski, J.P. Rabe, N. Koch, F.J. Zhang, Z. Xu, Arrays of crystalline C-60 and pentacene nanocolumns, Appl. Phys. Lett. 90 (2007).

DOI: 10.1063/1.2738193

Google Scholar

[17] X.N. Zhang, E. Barrena, D.G. de Oteyza, H. Dosch, Transition from layer-by-layer to rapid roughening in the growth of DIP on SiO2, Surf. Sci. 601 (2007) 2420.

DOI: 10.1016/j.susc.2007.04.051

Google Scholar

[18] A.C. Durr, F. Schreiber, K.A. Ritley, V. Kruppa, J. Krug, H. Dosch, B. Struth, Rapid roughening in thin film growth of an organic semiconductor (diindenoperylene), Phys Rev Lett. 90 (2003) 016104.

DOI: 10.1103/physrevlett.90.016104

Google Scholar

[19] A. Hinderhofer, A. Gerlach, S. Kowarik, F. Zontone, J. Krug, F. Schreiber, Smoothing and coherent structure formation in organic-organic heterostructure growth, Epl. 91 (2010).

DOI: 10.1209/0295-5075/91/56002

Google Scholar

[20] I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Rev Sci Instrum. 78 (2007) 013705.

DOI: 10.1063/1.2432410

Google Scholar

[21] A. Stierle, A. Steinhauser, A. Ruhm, F.U. Renner, R. Weigel, N. Kasper, H. Dosch, Dedicated Max-Planck beamline for the in situ investigation of interfaces and thin films, Rev Sci Instrum. 75 (2004) 5302.

DOI: 10.1063/1.1819552

Google Scholar

[22] A.C. Durr, F. Schreiber, M. Munch, N. Karl, B. Krause, V. Kruppa, H. Dosch, High structural order in thin films of the organic semiconductor diindenoperylene, Appl. Phys. Lett. 81 (2002) 2276.

DOI: 10.1063/1.1508436

Google Scholar

[23] L.M. Ramaniah, M. Boero, Structural, electronic, and optical properties of the diindenoperylene molecule from first-principles density-functional theory, Phys. Rev. A 74 (2006) 042505.

DOI: 10.1103/physreva.74.042505

Google Scholar

[24] N. Karl, Charge carrier transport in organic semiconductors, Synthetic Met. 133 (2003) 649.

Google Scholar

[25] Y.L. Huang, W. Chen, H. Huang, D.C. Qi, S. Chen, X.Y. Gao, J. Pflaum, A.T.S. Wee, Ultrathin Films of Diindenoperylene on Graphite and SiO2, J. Phys. Chem. C 113 (2009) 9251.

DOI: 10.1021/jp810804t

Google Scholar

[26] D. Kurrle, J. Pflaum, Exciton diffusion length in the organic semiconductor diindenoperylene, Appl. Phys. Lett. 92 (2008) 133306.

DOI: 10.1063/1.2896654

Google Scholar

[27] D.G. de Oteyza, E. Barrena, Y. Zhang, T.N. Krauss, A. Turak, A. Vorobiev, H. Dosch, Experimental Relation between Stranski-Krastanov Growth of DIP/F16CoPC Heterostructures and the Reconstruction of the Organic Interface, J. Phys. Chem. C 113 (2009).

DOI: 10.1021/jp809512a

Google Scholar

[28] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.C. Chang, A.C. Mayer, P. Clancy, J.M. Blakely, R.L. Headrick, S. Iannotta, G.G. Malliaras, Pentacene thin film growth, Chem. Mater. 16 (2004) 4497.

DOI: 10.1021/cm049563q

Google Scholar

[29] D.G. de Oteyza, E. Barrena, S. Sellner, J.O. Osso, H. Dosch, Structural rearrangements during the initial growth stages of organic thin films of F16CuPc on SiO2, J. Phys. Chem. B 110 (2006) 16618.

DOI: 10.1021/jp061889u

Google Scholar

[30] R. Hayakawa, A. Turak, X. Zhang, N. Hiroshiba, H. Dosch, T. Chikyow, Y. Wakayama, Strain-effect for controlled growth mode and well-ordered structure of quaterrylene thin films, J. Chem. Phys. 133 (2010) 034706.

DOI: 10.1063/1.3456733

Google Scholar

[31] A.C. Durr, B. Nickel, V. Shan-Fia, U. Taffner, H. Dosch, Observation of competing modes in the growth of diindenoperylene on SiO2, Thin Solid Films 503 (2006) 127.

DOI: 10.1016/j.tsf.2005.11.115

Google Scholar

[32] U. Heinemeyer, R. Scholz, L. Gisslen, M.I. Alonso, J.O. Osso, M. Garriga, A. Hinderhofer, M. Kytka, S. Kowarik, A. Gerlach, F. Schreiber, Exciton-phonon coupling in diindenoperylene thin films, Phys Rev B 78 (2008) 085210.

DOI: 10.1103/physrevb.78.085210

Google Scholar

[33] S. Braun, W.R. Salaneck, M. Fahlman, Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces, Adv. Mater. 21 (2009) 1450.

DOI: 10.1002/adma.200802893

Google Scholar

[34] K. Kanai, K. Akaike, K. Koyasu, K. Sakai, T. Nishi, Y. Kamizuru, T. Nishi, Y. Ouchi, K. Seki, Determination of electron affinity of electron accepting molecules, Appl. Phys. a-Mater. 95 (2009) 309.

DOI: 10.1007/s00339-008-5021-1

Google Scholar

[35] S. Henke, K.H. Thurer, J.K.N. Lindner, B. Rauschenbach, B. Stritzker, Structural Characterization of the Temperature-Dependence of C-60-Thin Films on Mica(001) by X-Ray-Diffraction, J. Appl. Phys. 76 (1994) 3337.

DOI: 10.1063/1.357456

Google Scholar

[36] W.I.F. David, R.M. Ibberson, J.C. Matthewman, K. Prassides, T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, D.R.M. Walton, Crystal-Structure and Bonding of Ordered C60, Nature 353 (1991) 147.

DOI: 10.1038/353147a0

Google Scholar

[37] M. Nguyen, A.Z. Turak, F. Maye, J. Heidkamp, J. Wrachtrup, H. Dosch, Island size effects in organic optoelectronic devices, Proceedings of the SPIE - The International Society for Optical Engineering (2010), 77221O (7 pp. ).

DOI: 10.1117/12.854478

Google Scholar

[38] Y. Zhang, E. Barrena, X.N. Zhang, A. Turak, F. Maye, H. Dosch, New Insight into the Role of the Interfacial Molecular Structure on Growth and Scaling in Organic Heterostructures, J Phys Chem C 114 (2010) 13752.

DOI: 10.1021/jp103841t

Google Scholar

[39] V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells, J. Appl. Phys. 94 (2003) 6849.

DOI: 10.1063/1.1620683

Google Scholar

[40] C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater. 11 (2001) 374.

DOI: 10.1002/1616-3028(200110)11:5<374::aid-adfm374>3.0.co;2-w

Google Scholar

[41] D. Cheyns, J. Poortmans, P. Heremans, C. Deibel, S. Verlaak, B.P. Rand, J. Genoe, Analytical model for the open-circuit voltage and its associated resistance in organic planar heterojunction solar cells, Phys Rev B 77 (2008).

DOI: 10.1103/physrevb.77.165332

Google Scholar

[42] J. Nelson, J. Kirkpatrick, P. Ravirajan, Factors limiting the efficiency of molecular photovoltaic devices, Phys Rev B 69 (2004).

DOI: 10.1103/physrevb.69.035337

Google Scholar