Development of Multilayered Chlorogenate-Peptide Based Biocomposite Scaffolds for Potential Applications in Ligament Tissue Engineering - An In Vitro Study

Article Preview

Abstract:

In this work, for the first time, chlorogenic acid, a natural phytochemical, was conjugated to a lactoferrin derived antimicrobial peptide sequence RRWQWRMKKLG to develop a self-assembled template. To mimic the components of extracellular matrix, we then incorporated Type I Collagen, followed by a sequence of aggrecan peptide (ATEGQVRVNSIYQDKVSL) onto the self-assembled templates for potential applications in ligament tissue regeneration. Mechanical properties and surface roughness were studied and the scaffolds displayed a Young’s Modulus of 169 MP and an average roughness of 72 nm respectively. Thermal phase changes were studied by DSC analysis. Results showed short endothermic peaks due to water loss and an exothermic peak due to crystallization of the scaffold caused by rearrangement of the components. Biodegradability studies indicated a percent weight loss of 27.5 % over a period of 37 days. Furthermore, the scaffolds were found to adhere to fibroblasts, the main cellular component of ligament tissue. The scaffolds promoted cell proliferation and displayed actin stress fibers indicative of cell motility and attachment. Collagen and proteoglycan synthesis were also promoted, demonstrating increased expression and deposition of collagen and proteoglycans. Additionally, the scaffolds exhibited antimicrobial activity against Staphylococcus epidermis bacteria, which is beneficial for minimizing biofilm formation if potentially used as implants. Thus, we have developed a novel biocomposite that may open new avenues to enhance ligament tissue regeneration.

You might also be interested in these eBooks

Info:

Pages:

37-56

Citation:

Online since:

October 2017

Export:

Price:

* - Corresponding Author

[1] M. Benjamin, E. Kaiser, S. Milz, Structure-function relationships in tendons: a review, J. Anat. 212 (2008) 211–228.

DOI: 10.1111/j.1469-7580.2008.00864.x

Google Scholar

[2] S. Tozer, D. Duprez, Tendon and ligament: development, repair and disease, Birth Defects Res. Part C - Embryo Today Rev. 75 (2005) 226–236.

DOI: 10.1002/bdrc.20049

Google Scholar

[3] A. Subramanian, T.F. Schilling, Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix, Development. 142 (2015) 4191–204.

DOI: 10.1242/dev.114777

Google Scholar

[4] A. M. Kiapour, M. M. Murray, Basic science of anterior cruciate ligament injury and repair, Bone Joint Res. 3 (2014) 20-31.

DOI: 10.1302/2046-3758.32.2000241

Google Scholar

[5] A. Ratcliffe, D.L. Butler, N.A. Dyment, P.J.J. Cagle, C.S. Proctor, S.S. Ratcliffe, E.L. Flatow, Scaffolds for tendon and ligament repair and regeneration, Ann. Biomed. Eng. 43 (2015) 819–831.

DOI: 10.1007/s10439-015-1263-1

Google Scholar

[6] C.K. Kuo, J.E. Marturano, R.S. Tuan, Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs., Sports Med. Arthrosc. Rehabil. Ther. Technol. 2 (2010) 20.

DOI: 10.1186/1758-2555-2-20

Google Scholar

[7] P. Di Benedetto, E. Di Benedetto, A. Fiocchi, A. Beltrame, A. Causero, Causes of failure of anterior cruciate ligament reconstruction and revision surgical strategies, Knee Surg. Relat. Res. 28 (2016) 319-324.

DOI: 10.5792/ksrr.16.007

Google Scholar

[8] V. D. Mahalingam, N. Behbahani-Nejad, E. A. Ronan, T. J. Olsen, M. J. Smietana, E. M. Wojtys, D. M. Wellik, E. M. Arruda, L. M. Larkin, Fresh versus frozen engineered bone–ligament–bone grafts for sheep anterior cruciate ligament repair, Tissue Eng. Part C Methods 21 (2015).

DOI: 10.1089/ten.tec.2014.0542

Google Scholar

[9] B.P. Chan, K.W. Leong, Scaffolding in tissue engineering: General approaches and tissue specific considerations, Eur. Spine J. 17 (2008).

DOI: 10.1007/s00586-008-0745-3

Google Scholar

[10] G. Chen, T. Ushida, T. Tateishi, Scaffold design for tissue engineering, Macromol. Biosci. 2 (2002) 67–77.

DOI: 10.1002/1616-5195(20020201)2:2<67::aid-mabi67>3.0.co;2-f

Google Scholar

[11] G. Ren, X. Chen, F. Dong, W. Li, X. Ren, Y. Zhang, Y. Shi, Concise review: mesenchymal stem cells and translational medicine: emerging issues, Stem Cells Transl. Med. 1 (2012) 51–58.

DOI: 10.5966/sctm.2011-0019

Google Scholar

[12] R. Boehler, J. Graham, L. Shea, Tissue engineering tools for modulation of the immune response, Biotechniques 51 (2011) 239–254.

DOI: 10.2144/000113754

Google Scholar

[13] M. Cheng, T. Wahafu, G. Jiang, W. Liu, Y. Qiao, X. Peng, T. Cheng, X. Zhang, G. He, X. Liu, A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration, Sci. Rep. 6 (2016).

DOI: 10.1038/srep24134

Google Scholar

[14] H. Tabesh, G. Amoabediny, N.S. Nik, M. Heydari, M. Yosefifard, S.O.R. Siadat, K. Mottaghy, The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration, Neurochem. Int. 54 (2009) 73–83.

DOI: 10.1016/j.neuint.2008.11.002

Google Scholar

[15] G. Amoabediny, N. Salehi-Nik, B. Heli (2011). The role of biodegradable engineered scaffold in tissue engineering, R. Pignatello (Ed. ), Biomaterials Sciences and Engineering, 2011, pp.153-172.

DOI: 10.5772/24331

Google Scholar

[16] Q.L. Loh, C. Choong, Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size, Tissue Eng. Part B. Rev. 19 (2013) 485–502.

DOI: 10.1089/ten.teb.2012.0437

Google Scholar

[17] H.Y. Lee, P.W. Kopesky, A. Plaas, J. Sandy, J. Kisiday, D. Frisbie, A.J. Grodzinsky, C. Ortiz, Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage, Osteoarthr. Cartil. 18 (2010).

DOI: 10.1016/j.joca.2010.07.015

Google Scholar

[18] S. Arnoczky, R. Warren, Anatomy of the cruciate ligaments. Ed: J. Feagin. The Crucial Ligaments: Diagnosis and Treatment of Ligamentous Injuries about the Knee. New York: Churchill Livingstone; 1994. 269–287.

Google Scholar

[19] *W. Petersen, B. Tillmann, Anatomy and function of the anterior cruciate ligament [in German]. Orthopade. 31 (2002) 710–718.

Google Scholar

[20] *W. Petersen, B. Tillmann, Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol (Berl). 200 (1999) 325–334.

DOI: 10.1007/s004290050283

Google Scholar

[21] G. Altman, R. Horan, H. Lu, J. Moreau, I. Martin, J. Richmond, D. Kaplan, Silk Matrix for Tissue Engineered Anterior Cruciate Ligaments, Biomaterials, 2002, 23, 4131-4141].

DOI: 10.1016/s0142-9612(02)00156-4

Google Scholar

[22] O. Laitinen, T. Pohjonen, P Törmälä, K. Saarelainen, J. Vasenius, P. Rokkanen, S. Vainionpää, Mechanical properties of biodegradable poly-L-lactide ligament augmentation device in experimental anterior cruciate ligament reconstruction. Arch. Orthop. Trauma Surg. 112 (1993).

DOI: 10.1007/bf00452963

Google Scholar

[23] Z. Ge, J. Goh, E. Lee, The effects of bone marrow-derived mesenchymal stem cells and fascia wrap application to anterior cruciate ligament tissue engineering, Cell Transplantation 14 (2006) 763-773.

DOI: 10.3727/000000005783982486

Google Scholar

[24] R. Liang, G. Yang, K. Kim, A. D'Amore, A. Pickering, C. Zhang, S. Woo, Positive effects of an extracellular matrix hydrogel on rat anterior cruciate ligament fibroblast proliferation and collagen mRNA expression, J. Orthop. Translat. 3 (2015).

DOI: 10.1016/j.jot.2015.05.001

Google Scholar

[25] J. Lewandowska-Kancucka, K. Mystek, A. Mignon, S. Van Vlierberghe, A. Katkiewwicz, M. Nowakowska. Alginate-gelatin based bioactive photocross-linkable hybrid materials for bone tissue engineering, Carbohydr. Polym. 157 (2017) 1714-1722.

DOI: 10.1016/j.carbpol.2016.11.051

Google Scholar

[26] A. Saminathan, G. Sriram, J. Vinoth, T. Cao, M. Meikle, Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain, Tissue Eng Part A 21 (2015).

DOI: 10.1089/ten.tea.2014.0221

Google Scholar

[27] T. Funakoshi, T. Majima, N. Iwasaki, S. Yamane, T. Masuko, A. Minami, K. Harada, H. Tamura, S. Tokura, S.I. Nishimura, Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering, J. Biomed. Mater. Res. - Part A 74 (2005).

DOI: 10.1002/jbm.a.30237

Google Scholar

[28] T. Nau, A.H. Teuschl, Regeneration of the anterior cruciate ligament: current strategies in tissue engineering, World J. Orthop. 6 (2015) 127–136.

DOI: 10.5312/wjo.v6.i1.127

Google Scholar

[29] A. Farah, M. Monteiro, C. M. Donangelo, S. Lafay, Chlorogenic acids from green coffee extract are highly bioavailable in human, J. Nutr. 138 (2008) 2309-2315.

DOI: 10.3945/jn.108.095554

Google Scholar

[30] Z. Lou, H. Wang, S. Zhu, C. Ma, Z. Wang, Antibacterial activity and mechanism of action of chlorogenic acid, J. Food Sci. 76 (2011).

DOI: 10.1111/j.1750-3841.2011.02213.x

Google Scholar

[31] M.J. Facon, B.J. Skura, Antibacterial activity of lactoferricin, lysozyme and EDTA against Salmonella enteritidis, Int. Dairy J. 6 (1996) 303–313.

DOI: 10.1016/0958-6946(95)00004-6

Google Scholar

[32] M. Paul, G.A. Somkuti, Degradation of milk-based bioactive peptides by yogurt fermentation bacteria, Lett. Appl. Microbiol. 49 (2009) 345–350.

DOI: 10.1111/j.1472-765x.2009.02676.x

Google Scholar

[33] N. Bruni, M.T. Capucchio, E. Biasibetti, E. Pessione, S. Cirrincione, L. Giraudo, A. Corona, F. Dosio, Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine, Molecules 21 (2016).

DOI: 10.3390/molecules21060752

Google Scholar

[34] D.I. Chan, E.J. Prenner, H.J. Vogel, Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action, Biochim. Biophys. Acta - Biomembr. 1758 (2006) 1184–1202.

DOI: 10.1016/j.bbamem.2006.04.006

Google Scholar

[35] D. Pavithra, M. Doble, Biofilm Formation, Bacterial adhesion and host response on polymeric implants – issues and prevention, Biomed. Mater. 3 (2008).

DOI: 10.1088/1748-6041/3/3/034003

Google Scholar

[36] Z. Mao, L. Ma, J. Zhou, C. Gao, J. Shen, Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly, Bioconjug. Chem. 16 (2005) 1316–1322.

DOI: 10.1021/bc049755b

Google Scholar

[37] U. Cheema, C.B. Chuo, P. Sarathchandra, S.N. Nazhat, R.A. Brown, Engineering functional collagen scaffolds: cyclical loading increases material strength and fibril aggregation, Adv. Funct. Mater. 17 (2007) 2426–2431.

DOI: 10.1002/adfm.200700116

Google Scholar

[38] F. Chamieh, A. -M. Collignon, B.R. Coyac, J. Lesieur, S. Ribes, J. Sadoine, A. Llorens, A. Nicoletti, D. Letourneur, M. -L. Colombier, S.N. Nazhat, P. Bouchard, C. Chaussain, G.Y. Rochefort, Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells, Sci. Rep. 6 (2016).

DOI: 10.1038/srep38814

Google Scholar

[39] F. Bi, Z. Shi, A. Liu, P. Guo, S. Yan, Anterior cruciate ligament reconstruction in a rabbit model using silk-collagen scaffold and comparison with autograft, PLoS One 10 (2015) 1–15.

DOI: 10.1371/journal.pone.0125900

Google Scholar

[40] T. Muthukumar, A. Aravinthan, J. Sharmila, N.S. Kim, J. Kim, Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with ginseng compound K, Carbohydr. Polym. 152 (2016) 566-574.

DOI: 10.1016/j.carbpol.2016.07.003

Google Scholar

[41] A. Meimandi-Parizi, A. Oryan, A. Moshiri, I.A. Silver, Novel application of a tissue-engineered collagen-based three-dimensional bio-implant in a large tendon defect model: a broad-based study with high value in translational medicine, Tissue Cell 45 (2013).

DOI: 10.1016/j.tice.2013.03.005

Google Scholar

[42] M.Z. Ilici, H.C. Robinson, C.J. Handley, Characterization of aggrecan retained and lost from the extracellular matrix of articular cartilage. Involvement of carboxyl-terminal processing in the catabolism of aggrecan, J. Biol. Chem. 273 (1998).

DOI: 10.1074/jbc.273.28.17451

Google Scholar

[43] P.J. Roughley, J.S. Mort, The role of aggrecan in normal and osteoarthritic cartilage, J. Exp. Orthop. 1 (2014) 8.

Google Scholar

[44] K.J. Doege, M. Sasaki, T. Kimura, Y. Yamada, Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms, J. Biol. Chem. 266 (1991).

DOI: 10.1016/s0021-9258(17)35257-2

Google Scholar

[45] H.Y. Lee, P.W. Kopesky, A. Plaas, J. Sandy, J. Kisiday, D. Frisbie, A.J. Grodzinsky, C. Ortiz, Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage, Osteoarthr. Cartil. 18 (2010).

DOI: 10.1016/j.joca.2010.07.015

Google Scholar

[46] L. S. Barak, R. R. Yocum, E. A. Nothnagel, W. W. Webb, Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1, 3-diazole-phallacidin, Proc. Natl. Acad. Sci. 77 (1980) 980-984.

DOI: 10.1073/pnas.77.2.980

Google Scholar

[47] Y. Matsui, K. Sugiyama, M. Kamei, T. Takahashi, T. Suzuki, Y. Katagata, T. Ito, Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis, J. Agric. Food Chem. 58 (2010).

DOI: 10.1021/jf102650d

Google Scholar

[48] Y. Choi, J. E. Lee J. H. Lee, J. H. Jeong, J. Kim, A biodegradation study of SBA-15 microparticles in simulated body fluid, Langmuir, 31 (2015) 6457-6462.

DOI: 10.1021/acs.langmuir.5b01316

Google Scholar

[49] L. Sun, C. Zheng, T. Webster, Self-assembled peptide nanomaterials for biomedical applications; promises and pitfalls, Int. J. Nanomed. 12 (2016) 73-86.

DOI: 10.2147/ijn.s117501

Google Scholar

[50] S. Wan, S. Borland, S.M. Richardson, C.L.R. Merry, A. Saiani, J.E. Gough, Self-assembling peptide hydrogel for intervertebral disc tissue engineering, Acta Biomater. 46 (2016) 29–40.

DOI: 10.1016/j.actbio.2016.09.033

Google Scholar

[51] Y.A. Miroshinokova, D.M. Jorgens, L. Spirio, M. Auer, A.L. Sieminski-Sarang, V.M. Weaver, Engineering strategies to recapitulate epithelial morphogenesis within synthetic 3 dimensional extracellular matrix with tunable mechanical properties, Phys. Biol. 8 (2011).

DOI: 10.1088/1478-3975/8/2/026013

Google Scholar

[52] J. Kisiday, M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, a J. Grodzinsky, Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair, Proc. Natl. Acad. Sci. 99 (2002).

DOI: 10.1073/pnas.142309999

Google Scholar

[53] R. Orbach, L. Adler-Abramovich, S. Zigerson, I. Mironi-Harpaz, D. Seliktar, E. Gazit, Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels, Biomacromolecules 10 (2009) 2646–2651.

DOI: 10.1021/bm900584m

Google Scholar

[54] S. Romanelli, J. Hartnett, I. Banerjee, Effects of amide side chains on nanoassembly formation and gelation of Fmoc–valine conjugates, Powder Technol. 271 (2015) 76-87.

DOI: 10.1016/j.powtec.2014.10.028

Google Scholar

[55] A. Hoffmann, G. Gross, Tendon and ligament engineering in the adult organism: Mesenchymal stem cells and gene-therapeutic approaches, Int. Orthop. 31 (2007) 791–797.

DOI: 10.1007/s00264-007-0395-9

Google Scholar

[56] M. Younesi, A. Islam, V. Kishore, J.M. Anderson, O. Akkus, Tenogenic Induction of human MSCs by anisotropically aligned collagen biotextiles, Adv. Funct. Mater. 24 (2014) 5762–5770.

DOI: 10.1002/adfm.201400828

Google Scholar

[57] C. Dong, Y. Lv, Application of collagen scaffold in tissue engineering: recent advances and new perspectives, Polymers 8 (2016) 1–20.

DOI: 10.3390/polym8020042

Google Scholar

[58] D. Amiel, E. Billings, W. Aksson, Ligament structure, chemistry, and physiology, Ed. D. Akeson, J O'Connor. Knee Ligaments: Structure, Function, Injury, and Repair. New York: Raven; 1990. 77-91.

Google Scholar

[59] P. Provensano, R. Vanderby. Collagen fibril morphology and organization: implants for force transmission in ligament and tendon, Matrix Biol., 25 (2006) 71-84.

DOI: 10.1016/j.matbio.2005.09.005

Google Scholar

[60] N. Zondio, Aromatic proline interactions: electronically tunable CH/π interactions, Acc. Chem. Res. 46 (2013) 1039-1049.

DOI: 10.1021/ar300087y

Google Scholar

[61] Biedermannova, K. Riley, K. Berka, J. Vondrasek, Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane, Phys. Chem. Chem. Phys. 14 (2008) 6350-6359.

DOI: 10.1039/b805087b

Google Scholar

[62] S. Romanelli, G. Knoll, A. Santora, A. Brown, I. Banerjee, Comparison of engineered peptide-glycosaminoglycan microfibrous hybrid scaffolds for potential applications in cartilage tissue regeneration, Fibers 3 (2015) 265–295.

DOI: 10.3390/fib3030265

Google Scholar

[63] U. Freudenberg, S.H. Behrens, P.B. Welzel, M. Müller, M. Grimmer, K. Salchert, T. Taeger, K. Schmidt, W. Pompe, C. Werner, Electrostatic interactions modulate the conformation of collagen I, Biophys. J. 92 (2007) 2108–2119.

DOI: 10.1529/biophysj.106.094284

Google Scholar

[64] J. Kong, S. Yu, Fourier transform infrared spectroscopic analysis of protein secondary structures, Acta Biochim. et Biophys. Sin. 39 (2007) 549–559.

DOI: 10.1111/j.1745-7270.2007.00320.x

Google Scholar

[65] M. A. Bryan, J. Brauner, G. Anderle, C. R. Flach, B. Brodsky, R. Mendelsohn, FTIR studies of collagen model peptides: complementary experimental and simulation approaches to conformation and unfolding, J. Am. Chem. Soc. 129 (2007) 7877-7884.

DOI: 10.1021/ja071154i

Google Scholar

[66] M. Dumitraşcu, V. Meltzer, E. Sima, M.G. Vîrgolici, M.G. Albu, A. Ficai, V. Moise, R. Minea, C. Vancea, A. Scǎrişoreanu, F. Scarlat, Characterization of electron beam irradiated collagenpolyvinylpyrrolidone (PVP) and collagen-dextran (DEX) blends, Dig. J. Nanomater. Biostructures 6 (2011).

DOI: 10.4028/www.scientific.net/ssp.188.102

Google Scholar

[67] C. -S. Kim, K. -H. Jung, H. Kim, C. -B. Kim, I. -K. Kang, Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction, Biomater. Res. 20 (2016).

DOI: 10.1186/s40824-016-0071-5

Google Scholar

[68] M. Altman, P. Lee, A. Rich, S. Zhang, Conformational behavior of ionic self-complementary peptides, Protein Sci. 9 (2000) 1095–1105.

DOI: 10.1110/ps.9.6.1095

Google Scholar

[69] H. Mira, M. Vilar, V. Esteve, M. Martinell, M.J. Kogan, E. Giralt, D. Salom, I. Mingarro, L. Peñarrubia, E. Pérez-Payá, Ionic self-complementarity induces amyloid-like fibril formation in an isolated domain of a plant copper metallochaperone protein, BMC Struct. Biol. 4 (2004).

DOI: 10.1186/1472-6807-4-7

Google Scholar

[70] Friess, W., G. Lee. Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials 17 (1996) 2289–2294.

DOI: 10.1016/0142-9612(96)00047-6

Google Scholar

[71] K. J. Payne, A. Veis. Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies, Biopolymers 27 (1988) 1749–1760.

DOI: 10.1002/bip.360271105

Google Scholar

[72] J. Sun, X. Jiang, R. Lund, K. H. Downing, N. P. Balsara, R. N. Zuckermann, Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles, Proc. Natl. Acad. Sci. 113 (2016) 3954-3959.

DOI: 10.1073/pnas.1517169113

Google Scholar

[73] A. H. Gröschel, A. Müller, Self-assembly concepts for multicompartment nanostructures, Nanoscal. 28 (2015) 11841-11876.

DOI: 10.1039/c5nr02448j

Google Scholar

[74] E. Chebab, K. Flik, A. Vidal, M. Levinson, R. Gallo, D. Altchek, R. Warren, Anterior cruciate ligament reconstruction using Achilles tendon allograft: an assessment of outcome for patients age 30 years and older.

DOI: 10.1007/s11420-010-9183-y

Google Scholar

[75] W. Akeson, S. Woo, D. Amiel, C. Frank. The chemical basis of tissue repair: Ligament biology. Ed: L. Hunter, F. Funk, Rehabilitation of the Injured Knee. St. Louis, MO: CV Mosby; 2004. 92.

Google Scholar

[76] F. Variola, Atomic force microscopy in biomaterials surface science, Phys. Chem. Chem. Phys. 17 (2015) 2950-2959.

DOI: 10.1039/c4cp04427d

Google Scholar

[77] T. A. Wren, S. A. Yerby, G. S. Beaupré, D. R. Carter, Mechanical properties of the human achilles tendon, Clin. Biomech. 16 (2001) 245-251.

DOI: 10.1016/s0268-0033(00)00089-9

Google Scholar

[78] H.G. Vogel, Influence of maturation and age on mechanical and biochemical parameters of connective tissue of various organs in the rat, Connect Tissue Res. 6 (1978) 161-166.

DOI: 10.3109/03008207809152626

Google Scholar

[79] F. Noyes, E. Grood, The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am 58 (1976) 1074–1082.

DOI: 10.2106/00004623-197658080-00006

Google Scholar

[80] F. M. de Almeida, T. C. Tomiosso, W. R. Nakagaki, L. Gomes, S. M. Matiello-Rosa, E. R. Pimentel, Effects of passive stretching on the biochemical and biomechanical properties of calcaneal tendon of rats, Connect Tissue Res. 50 (2009) 279-284.

DOI: 10.1080/03008200802697435

Google Scholar

[81] C. Xu, F. Yang, S. Wang, S. Ramakrishna, In vitro study of human vascular endothelial cell function on materials with various surface roughness, J. Biomed. Mater. Res. 1 (2004) 154-161.

DOI: 10.1002/jbm.a.30143

Google Scholar

[82] E. Kitakami, M. Aoki, C. Sato, H. Ishihata, M. Tanaka, Adhesion and proliferation of human periodontal ligament cells on poly(2-methoxyethyl acrylate), Biomed. Res. Int. 2014 (2014).

DOI: 10.1155/2014/102648

Google Scholar

[83] J. Anderud, R. Jimbo, P. Abrahamsson, E. Adolfsson, J. Malmström, A. Wennerberg, The impact of surface roughness and permeability in hydroxyapatite bone regeneration membranes, Clin. Oral Implants Res. 27 (2015) 1047–1054.

DOI: 10.1111/clr.12717

Google Scholar

[84] H.H. Huang, C.T. Ho, T.H. Lee, T.L. Lee, Effect of surface roughness of ground titanium on initial cell adhesion, Biomol. Eng. 21 (2004) 93-97.

DOI: 10.1016/j.bioeng.2004.05.001

Google Scholar

[85] E.M. V Hoek, S. Bhattacharjee, M. Elimelech, Effect of membrane surface roughness on colloid-membrane DLVO interactions, Langmuir 19 (2003) 4836–4847.

DOI: 10.1021/la027083c

Google Scholar

[86] S. Karbasi, S. Khorasani, S. Ebrahimi, S. Khalili, F. Fekrat, D. Sadeghi, Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications, Adv. Biomed. Res. 5 (2016).

DOI: 10.4103/2277-9175.188490

Google Scholar

[87] K. T. Nguyen, J. L. West, Photopolymerizable hydrogels for tissue engineering applications, Biomaterials 23 (2002) 4307-4314.

DOI: 10.1016/s0142-9612(02)00175-8

Google Scholar

[88] A.B. Kutikov, J. Song, Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications, ACS Biomater. Sci. Eng. 1 (2015) 463–480.

DOI: 10.1021/acsbiomaterials.5b00122

Google Scholar

[89] Y. Cao, Y. Liu, W. Liu, Q. Shan, S.D. Buonocore, L Cui, Bridging tendon defects using autologous tenocyte engineered tendon in a hen model, Plast. Reconstr. Surg. 110 (2002) 1280–1289.

DOI: 10.1097/01.prs.0000025290.49889.4d

Google Scholar

[90] K. Rezwan, Q. Z. Chen, J. Blaker, A. R. Boccaccini, Biodegradable and bioactive porous polymer/ inorganic composite scaffolds for bone tissue engineering, Biomaterials 27 (2006) 3413-3431.

DOI: 10.1016/j.biomaterials.2006.01.039

Google Scholar

[91] K. Hemmrich, J. Salber, M. Meersch, U. Wiesmann, T. Gries, N. Pallua, D. Klee, Three-dimensional nonwoven scaffolds from novel biodegradable poly(ester amide) for tissue engineering, J. Mater. Sci: Mater. Med. 19 (2008) 257-267.

DOI: 10.1007/s10856-006-0048-3

Google Scholar

[92] K. M. Pawelec, S. M. Best, R. E. Cameron, Collagen: a network or regenerative medicine, J. Mater. Chem. B Mater. Biol. Med. 4 (2016) 6484-6496.

DOI: 10.1039/c6tb00807k

Google Scholar

[93] A.C. Vieira, R.M. Guedes, V. Tita, Damage-induced hydrolyses modelling of biodegradable polymers for tendons and ligaments repair, J. Biomech. 48 (2015) 3478–3485.

DOI: 10.1016/j.jbiomech.2015.05.025

Google Scholar

[94] S.J. Kew, J.H. Gwynne, D. Enea, M. Abu-Rub, A. Pandit, D. Zeugolis, R.A. Brooks, N. Rushton, S.M. Best, R.E. Cameron, Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials, Acta Biomater. 7 (2011) 3237–3247.

DOI: 10.1016/j.actbio.2011.06.002

Google Scholar

[95] R. Frairia, L. Berta, Biological effects of extracorporeal shock waves on fibroblasts. A review, Muscles. Ligaments Tendons J. 1 (2011) 138–47.

Google Scholar

[96] C.S. Chamberlain, E.M. Crowley, H. Kobayashi, K.W. Eliceiri, R. Vanderby, Quantification of collagen organization and extracellular matrix factors within the healing ligament. Microsc. Microanal. 17 (2011) 779–87.

DOI: 10.1017/s1431927611011925

Google Scholar

[97] P. Hotulainen, P. Lappalainen, Stress fibers are generated by two distinct actin assembly mechanisms in motile cells, J. Cell Biol. 173 (2006) 383-394.

DOI: 10.1083/jcb.200511093

Google Scholar

[98] R. Parenteau-Bariel, R. Gauvin, F. Berthod, Collagen-based biomaterials for tissue engineering applications, Materials 3 (2010) 1863-1887.

DOI: 10.3390/ma3031863

Google Scholar

[99] H. H. Lu, S. F. El-Amin, K. D. Scott, C. T. Laurencin, Three-dimensional, bioactive, biodegradable polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro, J. Biomed. Mater. Res. 64 (2003).

DOI: 10.1002/jbm.a.10399

Google Scholar

[100] G. Peluso, O. Petillo, J.M. Anderson, L. Ambrosio, L. Nicolais, M.A.B. Melone, F.O. Eschbach, S.J. Huang, The differential effects of poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate)/ poly(caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts, J. Biomed. Mater. Res. 34 (1997).

DOI: 10.1002/(sici)1097-4636(19970305)34:3<327::aid-jbm7>3.0.co;2-m

Google Scholar

[101] S.R. Caliari, D.W. Weisgerber, M.A. Ramirez, D.O. Kelkhoff, B.A.C. Harley, The influence of collagen-glycosaminoglycan scaffold relative density and microstructural anisotropy on tenocyte bioactivity and transcriptomic stability, J. Mech. Behav. Biomed. Mater. 11 (2012).

DOI: 10.1016/j.jmbbm.2011.12.004

Google Scholar

[102] S. J. Bryant, K. S. Anseth, Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels, J. Biomed. Mater. Res. 59 (2002) 63-72.

DOI: 10.1002/jbm.1217

Google Scholar

[103] S. B. Orr, A. Chainani, K. J. Hippensteel, A. Kishan, C. Gilchrist, N. W. Garrigues, D. S. Ruch, F. Guilak, D. Little, Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering, Acta Biomater. 24 (2015) 117-126.

DOI: 10.1016/j.actbio.2015.06.010

Google Scholar

[104] H. B. Henninger, C. J. Underwood, G. A. Ateshian, J. A. Weiss, Effect of sulfated glycosaminoglycan digestion on the transverse permeability of medial collateral ligament, J. Biomech. 43 (2010) 2567-2573.

DOI: 10.1016/j.jbiomech.2010.05.012

Google Scholar

[105] M. Benjamin, H. Toumi, J. R. Ralphs, G. Bydder, T. M. Best, S. Milz, Where tendons and ligaments meet bone: attachment sites (enthuses) in relation to exercise and/ or mechanical load, J. Anat. 208 (2006) 471-490.

DOI: 10.1111/j.1469-7580.2006.00540.x

Google Scholar

[106] R. W. Farndale, C. A. Sayers, A. J. Barrett, A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures, Connective Tissue Res. 9 (1982) 247-248.

DOI: 10.3109/03008208209160269

Google Scholar

[107] M. Y. H. Chin, A. Sandham, J. de Vries, H. C. van der Mei, H. J. Busscher, Biofilm formation on surface characterized micro-implants for skeletal anchorage in orthodontics, Biomaterials 28 (2007) 2032-(2040).

DOI: 10.1016/j.biomaterials.2006.12.014

Google Scholar

[108] B. M. Chen-Charpentier, D. Stanscu, Biofilm growth on medical implants with randomness, Math. Comput. Model 54 (2011) 1682-1688.

Google Scholar

[109] G. Belibasakis*, A. Meier, B. Guggenheim, N. Bostanci, Oral biofilm challenge regulates the RANKL-OPG system in periodontal ligament and dental pulp cells, Microbial Pathogenesis, 50 (2011) 6-11.

DOI: 10.1016/j.micpath.2010.11.002

Google Scholar

[110] M. Hantes, V. Raoulis, N. Doxariotis, A. Drakos, T. Karachalios, K. Malizos, Management of septic arthritis after arthroscopic anterior cruciate ligament reconstruction using a standard surgical protocol, The Knee, 24 (2017) 588-593.

DOI: 10.1016/j.knee.2017.02.007

Google Scholar

[111] K. Y. Ha, Y. Chung, S. J. Ryoo, Adherence and biofilm formation of Staphylococcus epidermis and Mycobacterium tuberculosis on various spinal implants, Spine 30 (2005)38-43.

DOI: 10.1097/01.brs.0000147801.63304.8a

Google Scholar

[112] D. Mack, P. Becker, I. Chatterjee, S. Dobinsky, J. K-M. Knobloch, G. Peters, H. Rohde, M. Herrmann, Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus, Int. J. Medical Microbiol. 294 (2004) 203-212.

DOI: 10.1016/j.ijmm.2004.06.015

Google Scholar

[113] A. W. Karchmer, M. D. Gordon, L. Archer, W. E. Dismukes, Staphylococcus epidermis causing prosthetic valve endocarditis: microbiologic and clinical observations as guides to therapy, Annals. Internal Med. 98 (1983) 447-455.

DOI: 10.7326/0003-4819-98-4-447

Google Scholar