MHD and Stability for Convective Flow of Micropolar Nanofluid over a Moving and Vertical Permeable Plate

Article Preview

Abstract:

This work mainly studies the effect of the magnetic field, the suction /injection, the Brownian and thermphorese diffusions and the stability on heat transfer in a laminar boundary layer flux of micropolar nanofluids flow adjacent to moving vertical permeable plate. The appropriate governing equations developed are reduced by the transformation of similarity which are solved using the finite difference method that implements the 3-stage Lobatto collocation formula. A parametric study of the physical parameters is carried out to show their influence on the different profiles. The results show that the microrotation of the suspended nanoparticles and the presence of the magnetic field become important on the heat transfer with good chemical stability of the micropolar nanofluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-65

Citation:

Online since:

April 2021

Export:

Price:

* - Corresponding Author

[1] A.C Eringen, Theory of micropolar fluids, Journal Mathematical Mechanics 16 (1)(1966)1-18.

Google Scholar

[2] G.C. Bourantas, V.C. Loukopoulos, Modeling the natural convective flow of micropolar nanofluids, International Journal of Heat and Mass Transfer 68 (2014) 35–41.

DOI: 10.1016/j.ijheatmasstransfer.2013.09.006

Google Scholar

[3] E.M Elbarbary, N.S Elgazery, Flow and heat transfer of a micropolar fluid in an axisymmetric stagnation flow on a cylinder with variable properties and suction, Acta Mechanica 176 (2005) 213–229.

DOI: 10.1007/s00707-004-0205-z

Google Scholar

[4] S. Choi, Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonian flows, edited by D.A. Siginer, (ASME, 1995) pp.99-105.

Google Scholar

[5] G. R. S Reddy, K. Mahes, Combined Convection on a Vertical Cylinder in a Non-Newtonian Nanofluid, Journal of Nanofluids, 2 (2013) 157-164.

DOI: 10.1166/jon.2013.1048

Google Scholar

[6] A.M Bouaziz, S. Hanini, Double dispersion for double diffusive boundary layer in non-Darcy saturated porous medium filled by a nanofluid, Journal of Mechanics, (2016) 441-451.

DOI: 10.1017/jmech.2016.18

Google Scholar

[7] A. Rehman, S. Nadeem, Mixed Convection Heat Transfer in Micropolar Nanofuid over a Vertical Slender Cylinder, Chin. Phys. Lett, 29 (12) (2012) 1-5.

DOI: 10.1088/0256-307x/29/12/124701

Google Scholar

[8] K.A Kumar, J. R Reddy, V. Sugunamma, N. Sandeep, Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alexandria engineering journal, 57 (1) (2018) 435-443.

DOI: 10.1016/j.aej.2016.11.013

Google Scholar

[9] K.A Kumar, V Sugunamma, N Sandeep, Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet, Journal of Thermal Analysis and Calorimetry, (2019) 1-9.

DOI: 10.1007/s10973-019-08977-0

Google Scholar

[10] A. Kumar, V. Sugunamma, N. Sandeep, JV R.R, Impact of Brownian motion and thermophoresis on bioconvective flow of nanoliquids past a variable thickness surface with slip effects, Multidiscipline Modeling in Materials and Structures, (2019).

DOI: 10.1108/mmms-02-2018-0023

Google Scholar

[11] K.A Kumar, V. Sugunamma, N. Sandeep, thermophoresis and brownian motion effects on mhd micropolar nanofluid flow past a stretching surface with non-uniform heat source/sink, computational thermal sciences: an international journal,  12(1) (2020).

DOI: 10.1615/computthermalscien.2020027016

Google Scholar

[12] I. Tlili, M.T Mustafa, K.A Kumar, N. Sandeep, Effect of asymmetrical heat rise/fall on the film flow of magnetohydrodynamic hybrid ferrofluid. Scientific Reports, 10(1) (2020) 1-11.

DOI: 10.1038/s41598-020-63708-y

Google Scholar

[13] K.A Kumar, N. Sandeep, V. Sugunamma, I.L Animasaun, Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid, Journal of Thermal Analysis and Calorimetry, 139 (3) (2020) 2145-2153.

DOI: 10.1007/s10973-019-08628-4

Google Scholar

[14] H. Aliagha, M.N Bouaziz, S. Hanini, Magnetohydrodynamic, thermal radiation and convective boundary effects of free convection flow past a vertical plate embedded in a porous medium saturated with a nanofluid, J. of Mechanics, 31(5) (2015) 607-616.

DOI: 10.1017/jmech.2015.28

Google Scholar

[15] H. Aliagha, M.N Bouaziz, S. Hanini, Free Convection Boundary-Layer Flow from a Vertical Flat Plate Embedded in a Darcy Porous Medium Filled with a Nanofluid: Effects of Magnetic Field and Thermal Radiation, Arabian Journal for Science and Engineering, 39 (11) (2014) 8331-8340.

DOI: 10.1007/s13369-014-1405-z

Google Scholar

[16] A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface, Computational Mathematical Applications 56 (2008) 3188–3194.

DOI: 10.1016/j.camwa.2008.09.013

Google Scholar

[17] K.A Kumar, N. Sandeep, V. Sugunamma, A non‐Fourier heat flux model for magnetohydrodynamic micropolar liquid flow across a coagulated sheet. Heat Transfer-Asian Research, 48(7) (2019) 2819-2843.

DOI: 10.1002/htj.21518

Google Scholar

[18] K.A Kumar, V. Sugunamma, N. Sandeep, S. Sivaiah, Physical aspects on MHD micropolar fluid flow past an exponentially stretching curved surface, Defect and Diffusion Forum 401(2020) 79-91.

DOI: 10.4028/www.scientific.net/ddf.401.79

Google Scholar

[19] K.A Kumar, V. Sugunamma, N. Sandeep, Physical aspects on unsteady MHD‐free convective stagnation point flow of micropolar fluid over a stretching surface, Heat Transfer-Asian Research, 48(8) (2019) 3968-3985.

DOI: 10.1002/htj.21577

Google Scholar

[20] K.A Kumar, V. Sugunamma, N. Sandeep, M.T Mustafa, M. T, Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink. Scientific reports, 9(1) (2019) 1-14.

DOI: 10.1038/s41598-019-51242-5

Google Scholar

[21] S.A Alliche, M.N. Bouaziz, Magnetic field and thermal radiation effects on mixed convection heat and mass transfer of micropolar fluid along a vertical slender hollow circular cylinder, JP Journal of Heat and Mass Transfer, 15 (2) (2018) 157-180.

DOI: 10.17654/hm015020157

Google Scholar

[22] K. Das, Influence of thermophoresis and chemical reaction on MHD micropolar fluid flow with variable fluid properties, International Journal Heat mass transfer 55 (2012) 766-774.

DOI: 10.1016/j.ijheatmasstransfer.2012.07.033

Google Scholar

[23] M.A.A Mahmoud, Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity, Physica A (2007) 401–410.

DOI: 10.1016/j.physa.2006.09.010

Google Scholar

[24] R. Alouaoui, M.N Bouaziz, Influence of thermophoresis on MHD micropolar fluid over a moved permeable plate, Mechanika. 23(3) (2017) 382-390.

DOI: 10.5755/j01.mech.23.3.14723

Google Scholar

[25] A. Ishak, R. Nazar, I. Pop, MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux, Communications Nonlinear Science Numerical Simulation, 14 (2009) 109-118.

DOI: 10.1016/j.cnsns.2007.07.011

Google Scholar

[26] D. Pal, S. Chatterjee, Mixed convection magnetohydrodynamic heat and mass transfer past a stretching surface in a micropolar fluid-saturated porous medium under the influence of Ohmic heating, Soret and Dufour effects, Communications Nonlinear Science Numerical Simulation, 16 (2011) 1329–1346.

DOI: 10.1016/j.cnsns.2010.06.008

Google Scholar

[27] M.A Seddeek, S.N Odda, M.Y Akl, M.S Abdelmeguid, Analytical solution for the effect of radiation on flow of a magneto-micropolar fluid past a continuously moving plate with suction and blowing, Computational Materials Science, 45 (2009) 423– 428.

DOI: 10.1016/j.commatsci.2008.11.001

Google Scholar

[28] A.Tetbirt, M.N. Bouaziz, M. Tahar-abbes, Numerical study of magnetic effect on the velocity distribution field in a macro/micro scale of a micropolar and viscous fluids in vertical channel, Journal of Molecular liquids, 216 (2016) 103-110.

DOI: 10.1016/j.molliq.2015.12.088

Google Scholar

[29] M.A.A Mahmoud, S.E Waheed, MHD stagnation point flow of a micropolar fluid towards a moving surface with radiation, Meccanica47 (2012) 1119-1130.

DOI: 10.1007/s11012-011-9498-x

Google Scholar

[30] M. Abd-El Aziz, Thermal radiation effects on magnetohydrodynamic mixed convection flow of a micropolar fluid past a continuously moving semi-infinite plate for high temperature differences, Acta Mechanica, 187 (2006) 113-127.

DOI: 10.1007/s00707-006-0377-9

Google Scholar

[31] A.J Chamkha, R.A Mohamed , S.E Ahmed, Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and radiation effects, Meccanica, 46 (2011) 399–411.

DOI: 10.1007/s11012-010-9321-0

Google Scholar

[32] E. Priyadarshini, N. Pradhan, A. K. Pradhan, and P. Pradhan, Label free and high specific detection of mercury ions based on silver nano-liposome, Spectrochim, Acta A Mol. Biomol. Spectrosc, 163 (2016) 127–133.

DOI: 10.1016/j.saa.2016.03.040

Google Scholar

[33] M. B. Kasture, P. Patel, A. A. Prabhune, C. V. Ramana, A. A. Kulkarni, and B. L. V. Prasad, Synthesis of silver nanoparticles by sophorolipids: effect of temperature and sophorolipid structure on the size of particles, J. Chem. Sci., 120 (2008) 515–520.

DOI: 10.1007/s12039-008-0080-6

Google Scholar

[34] C.G. Kumar, S.K. Mamidyala, B. Das, B. Sridhar, G.S. Devi, and M.S.L. Karuna, Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R, J. Microbiol. Biotechnol, 20 (2010) 1061–1068.

DOI: 10.4014/jmb.1001.01018

Google Scholar

[35] S. Ferhat, R. Alouaoui, Screening and preliminary characterization of biosurfactants produced by Ochrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils, International Bio-deterioration & Bio-degradation, 65 (2011) 1182-1188.

DOI: 10.1016/j.ibiod.2011.07.013

Google Scholar

[36] S. Ferhat, R. Alouaoui, Production and characterization of biosurfactant by free and immobilized cells from Ochrobactrum intermedium isolated from the soil of southern Algeria with a view to environmental application, Biotechnology and Biotechnological Equipment, 31 (2017) 733-742.

DOI: 10.1080/13102818.2017.1309992

Google Scholar

[37] K. Long Hsiao, Heat and mass transfer for micropolar flow with radiation effect past a nonlinearly stretching sheet, Heat Mass Transfer 46 (2010) 413-419.

DOI: 10.1007/s00231-010-0580-z

Google Scholar

[38] G. Ahmadi, Self similar solution of incompressible micropolar fluid boundary layer over a semi-infinite plate, International Journal Engineering Science 14 (1976) 639-646.

DOI: 10.1016/0020-7225(76)90006-9

Google Scholar

[39] N.A Yacob, A. Ishak, MHD flow of a micropolar fluid towards a vertical permeable plate with prescribed surface heat flux, Chemical Engineering Science Research Design, 89 (2011) 2291-2297.

DOI: 10.1016/j.cherd.2011.03.011

Google Scholar

[40] S. Jana, A.S Khojin,WH Zhong, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, Thermochim Acta, (2007) 462.

DOI: 10.1016/j.tca.2007.06.009

Google Scholar

[41] S.A. Angayarkanni, J. Philip, Review on thermal properties of nanofluids: Recent developments, Advances in Colloid and Interface Science, 225 (2015) 146-176.

DOI: 10.1016/j.cis.2015.08.014

Google Scholar