MHD Flow of Non-Newtonian Molybdenum Disulfide Nanofluid in a Converging/Diverging Channel with Rosseland Radiation

Article Preview

Abstract:

The steady two-dimensional flow of an incompressible non-Newtonian Molybdenum Disulfide nanofluid in the presence of source or sink between two stretchable or shrinkable walls under the influence of thermal radiation is investigated numerically. A generalized transformation is applied to convert the constructed set of partial differential equations (PDEs) into the system of non-linear coupled ordinary differential equations (ODEs). The obtained system of ODEs are solved by using Runge-Kutta 4th and 5th order. The influence of physical parameters, shrinking/ stretching parameter, Casson parameter, Hartmann number, Reynolds number, solid volume fraction, opening angle of the channel and radiation parameter on the velocity and temperature distribution are observed for converging and diverging channels. It is noticed that thermal boundary layer thickness is diminished for increased thermal radiation resulting in gradual temperature fall. The results also reveal that velocity and temperature profile both are elevated on raising the stretching parameter and Hartmann number. A comparative analysis is made out to validate the present results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-106

Citation:

Online since:

May 2020

Export:

Price:

* - Corresponding Author

[1] G. B. Jeffery, The two-dimensional steady motion of a viscous fluid. Lond. Edinb. Dublin Philos, Mag. J. Sci. 29 (172) (1915) 455–465.

DOI: 10.1080/14786440408635327

Google Scholar

[2] G. Hamel, Spiralförmige bewegungenzäher flüssigkeiten. Jahresbericht der deutschenmathematiker-vereinigung 25 (1917) 34-60.

Google Scholar

[3] L. Rosenhead, The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc. R. Soc. Lond. A, 175 (963) (1940) 436-467.

DOI: 10.1098/rspa.1940.0068

Google Scholar

[4] J. S. Roy, P. Nayak, Steady two dimensional incompressible laminar visco-elastic flow in a converging or diverging channel with suction and injection, Mech 43 (1982) 129–36.

DOI: 10.1007/bf01175821

Google Scholar

[5] M. Sheikholeslami, D. D. Ganji, H. R. Ashorynejad, H. B. Rokni, Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method, App. Math.and Mechanics 33(1) (2012). 25-36.

DOI: 10.1007/s10483-012-1531-7

Google Scholar

[6] S. S. Motsa, P. Sibanda, F. G. Awad, S. Shateyi, A new spectral-homotopy analysis method for the MHD Jeffery–Hamel problem, Computers & Fluids 39 (7) (2010) 1219-1225.

DOI: 10.1016/j.compfluid.2010.03.004

Google Scholar

[7] S. M. Moghimi, D. D. Ganji, H. Bararnia, M. Hosseini, M. Jalaal, Homotopy perturbation method for nonlinear MHD Jeffery–Hamel problem, Computers & Mathematics with Applications 61 (8) (2011) 2213-2216.

DOI: 10.1016/j.camwa.2010.09.018

Google Scholar

[8] A. Dib, A. Haiahem, B. Bou-Said, An analytical solution of the MHD Jeffery–Hamel flow by the modified Adomian decomposition method, Computers & Fluids 102 (2014) 111-115.

DOI: 10.1016/j.compfluid.2014.06.026

Google Scholar

[9] M. M. Rashidi, N. V. Ganesh, A. A. Hakeem, B. Ganga, Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. Journal of Molecular Liquids 198 (2014) 234-238.

DOI: 10.1016/j.molliq.2014.06.037

Google Scholar

[10] M. H. Abolbashari, N. Freidoonimehr, F. Nazari, M. M. Rashidi, Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid, Powder Technology 267 (2014) 256-267.

DOI: 10.1016/j.powtec.2014.07.028

Google Scholar

[11] A. S. Dogonchi, D. D. Ganji, Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation, J. Molecular Liquids 220 (2016) 592-603.

DOI: 10.1016/j.molliq.2016.05.022

Google Scholar

[12] L. J. Crane, Flow past a stretching plate, Zeitschriftfürangewandte Mathematik und Physik ZAMP, 21 (4) (1970) 645-647.

DOI: 10.1007/bf01587695

Google Scholar

[13] M. Mustafa, J. A. Khan, T. Hayat & A. Alsaedi, On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk, Journal of Molecular Liquids 211 (2015) 119-125.

DOI: 10.1016/j.molliq.2015.06.065

Google Scholar

[14] J. Reza, F. Mebarek-Oudina, O. D. Makinde, MHD Slip flow of Cu-Kerosene Nanofluid in a Channel with Stretching Walls using 3-stage Lobatto IIIA formula. Defect and Diffusion Forum 387 (2018) 51-62.

DOI: 10.4028/www.scientific.net/ddf.387.51

Google Scholar

[15] J. Raza, F. Mebarek-Oudina, A. J. Chamkha, Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects, Multidiscipline Modeling in Materials and Structures (2019) http://dx.doi.org/10.1108/MMMS-07-2018-0133.

DOI: 10.1108/mmms-07-2018-0133

Google Scholar

[16] P. Ram, K. Sharma, On the revolving ferrofluid flow due to a rotating disk. International Journal of Nonlinear Science 13 (3) (2012) 317-324.

Google Scholar

[17] P. Ram, V. Kumar, Effect of temperature dependent viscosity on revolving axi-symmetric ferrofluid flow with heat transfer, Applied Mathematics and Mechanics, 33(11) (2012) 1441-1452.

DOI: 10.1007/s10483-012-1634-8

Google Scholar

[18] P. Ram, V. Kumar, FHD flow with heat transfer over a stretchable rotating disk. Multidiscipline Modeling in Materials and Structures 9(4) (2013) 524-537.

DOI: 10.1108/mmms-03-2013-0013

Google Scholar

[19] P. Ram, V. K. Joshi, K. Sharma, M. Walia , N. Yadav, Variable viscosity effects on time dependent magnetic nanofluid flow past a stretchable rotating plate, Open Physics 14 (1) (2016) 651-658.

DOI: 10.1515/phys-2016-0072

Google Scholar

[20] M. Alkasassbeh, Z. Omar, F. Mebarek-Oudina, J. Raza, A. J. Chamkha, Heat transfer study of convective fin with temperature-dependent internal heat generation by hybrid block method, Heat Transfer-Asian Research 48(4) (2019) 1225-1244.

DOI: 10.1002/htj.21428

Google Scholar

[21] J. M. Owen, R. H. Roger, Flow and heat transfer in rotating-disc systems. Vol. I-Rotor-stator systems, NASA STI/Recon Technical Report A, 90 (1989). [22].

Google Scholar

[22] F. Mebarek-Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer—Asian Research 48(1) (2019) 135-147.

DOI: 10.1002/htj.21375

Google Scholar

[23] M. Sheikholeslami, S. Abelman, D. D. Ganji, Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. International Journal of Heat and Mass Transfer 79 (2014) 212-222.

DOI: 10.1016/j.ijheatmasstransfer.2014.08.004

Google Scholar

[24] P. Ram, V. K. Joshi, O. D. Makinde, Unsteady convective flow of hydrocarbon magnetite nano-suspension in the presence of stretching effects. Defect and Diffusion Forum 377 (2017) 155-165. [26-27].

DOI: 10.4028/www.scientific.net/ddf.377.155

Google Scholar

[25] F. Mebarek-Oudina, R. Bessaïh, Magnetohydrodynamic stability of natural convection flows in czochralski crystal growth. World Journal of Engineering 4(4) (2007) 15-22.

Google Scholar

[26] F. Mebarek-Oudina, R.Bessaïh, Numerical modeling of MHD stability in a cylindrical configuration. J. Franklin Institute 351(2) (2014) 667-681.

DOI: 10.1016/j.jfranklin.2012.11.004

Google Scholar

[27] F. Mebarek-Oudina, O. D. Makinde, Numerical simulation of oscillatory MHD natural convection in cylindrical annulus prandtl number effect, Defect and Diffusion Forum 387 (2018) 417-427.

DOI: 10.4028/www.scientific.net/ddf.387.417

Google Scholar

[28] F. Mebarek-Oudina, R. Bessaïh, Stabilité magnétohydrodynamique des écoulements de convection naturelle dans une configuration cylindrique de type Czochralski, Société Française de Thermique 1 (2007) 451–457.

Google Scholar

[29] M. Hamid, M. Usman, T. Zubair, R. U. Haq, W. Wang, Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: A Galerkin approach, Int. J. Heat and Mass Transfer 124 (2018) 706-714.

DOI: 10.1016/j.ijheatmasstransfer.2018.03.108

Google Scholar

[30] Md. S. Alam, M. A. H. Khan, O. D. Makinde, Magneto-nanofluid dynamics in convergent-divergent channel and its inherent irreversibility, Defect and Diffusion Forum 377 (2017) 95-110.

DOI: 10.4028/www.scientific.net/ddf.377.95

Google Scholar

[31] O. D. Makinde, Effect of arbitrary magnetic Reynolds number on MHD flows in convergent-divergent channels. International Journal of Numerical Methods for Heat & Fluid Flow 18 (6) (2008) 697-707.

DOI: 10.1108/09615530810885524

Google Scholar

[32] O. D. Makinde, G. Tay, Numerical computation of bifurcation for steady flow in a converging channel with accelerating surface, A. M. S. E., Modelling, Measurement & Control B, 68 (1) (1999) 1.33-1.43.

Google Scholar

[33] O. D. Makinde, P. Y. Mhone, Hermite-Padé approximation approach to MHD Jeffery-Hamel flows. Applied Mathematics and Computation 181(2006) 966-972.

DOI: 10.1016/j.amc.2006.02.018

Google Scholar

[34] O. D. Makinde, P. Y. Mhone, Temporal stability of small disturbances in MHD Jeffery-Hamel flows, Computers and Mathematics with Applications 53 (2007) 128–136.

DOI: 10.1016/j.camwa.2006.06.014

Google Scholar

[35] N. T. M. Eldabe, G. Saddeck, A. F. El-Sayed, Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders, Mechanics and Mechanical Eng. 5 (2) (2001) 237-251.

Google Scholar

[36] M. M. Rashidi, N. V. Ganesh, A. A. Hakeem, B. Ganga, Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J. Molecular Liq. 198 (2014), 234-238.

DOI: 10.1016/j.molliq.2014.06.037

Google Scholar

[37] M. Turkyilmazoglu, Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels. Computers & Fluids 100 (2014) 196-203.

DOI: 10.1016/j.compfluid.2014.05.016

Google Scholar

[38] J. Raza, A. M. Rohni, Z. Omar, MHD flow and heat transfer of Cu–water nanofluid in a semi porous channel with stretching walls, International Journal of Heat and Mass Transfer 103 (2016) 336-340.

DOI: 10.1016/j.ijheatmasstransfer.2016.07.064

Google Scholar

[39] J. Raza, A. M. Rohni, Z. Omar, Rheology of micropolar fluid in a channel with changing walls: investigation of multiple solutions. Journal of Molecular Liquids 223 (2016) 890-902.

DOI: 10.1016/j.molliq.2016.07.102

Google Scholar

[40] J. Raza, A. M. Rohni, Z. Omar, Triple solutions of Casson fluid flow between slowly expanding and contracting walls, AIP Conference Proceedings, AIP Publishing 1905 (1) (2017) 030029.

DOI: 10.1063/1.5012175

Google Scholar

[41] J. Raza, A. M. Rohni, Z. Omar, Multiple solutions of mixed convective MHD casson fluid flow in a channel, Journal of Applied Mathematics (2016). 48.

DOI: 10.1155/2016/7535793

Google Scholar

[42] S. Shafie, A. Gul, I. Khan, Molybdenum disulfide nanoparticles suspended in water-based nanofluids with mixed convection and flow inside a channel filled with saturated porous medium. AIP Conference Proceedings, AIP Publishing 1775(1) (2016) 030042.

DOI: 10.1063/1.4965162

Google Scholar