Numerical Analysis of Diffusion-Controlled Internal Corrosion by the Cellular Automata Approach

Article Preview

Abstract:

The cellular automata method offers a promising approach to describe diffusion and diffusion-controlled precipitation processes at high temperatures. During high temperature exposure, technical components like gas-turbine blades, furnaces, or exhaust systems, are operating in corrosive atmospheres. The resulting material-degradation processes are diffusion‐controlled, and corrosive species penetrate into the material leading to the formation of embrittling precipitates. Cellular automata (CA) represent distributed dynamical systems whose structure is particularly well suited to determine the temporal evolution of the system. In this study, it is shown that the model is able to consider diffusion, nucleation and growth aspects, interdiffusion between scales, and high diffusivity paths like grain boundaries. This has been demonstrated by applying CA to (i) nitrogen diffusion, (ii) internal intergranular oxidation of nickel-based alloy, and (iii) interdiffusion of a binary diffusion couple.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-58

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] J. Crank. The Mathematics of Diffusion. Oxford University Press, Oxford, Großbritannien, (1979).

Google Scholar

[2] L.S. Darken. Diffusion, Mobility and their Interrelation through Free Energy in BinaryMetallic Systems. Transactions of the Metallurgical Society of AIME, 175(1): 184–201, (1948).

Google Scholar

[3] C. Wagner, Zeitschrift für Elektrochemie 63, 1959 (772).

Google Scholar

[4] K. Bongartz, R. Schulten, W. J. Quadakkers, H. Nickel, A Finite Difference Model describing Carburization in High-Temperature Alloys, Corrosion 42 (1986), 390.

DOI: 10.5006/1.3584919

Google Scholar

[5] H. G. Sockel, H. ‐J. Christ, Penetration of Foreign Elements Connected with Internal Precipitation: A Computer-Based Description and First Experimental Verification, Materials Science and Engineering 87 (1987), 119.

DOI: 10.1016/0025-5416(87)90368-5

Google Scholar

[6] Y. Li, J. E. Morral, A Local Equilibrium Model for Internal Oxidation, Acta Materialia 50 (2002), 3683.

DOI: 10.1016/s1359-6454(02)00181-7

Google Scholar

[7] G. Zimbitas, W. G. Sloof, Modeling Internal Oxidation of Binary Ni Alloys, Materials Science Forum 696 (2011), 82.

DOI: 10.4028/www.scientific.net/msf.696.82

Google Scholar

[8] U. Krupp, V. B. Trindade, H. -J. Christ, U. Buschmann, W. Wiechert, Oxidation Mechanisms of Cr‐Containing Steels and Ni‐Base Alloys at High Temperatures Part II: Computer‐Based Simulation, Materials and Corrosion 57 (2006) 263.

DOI: 10.1002/maco.200503933

Google Scholar

[9] Y. H. Wen, L. Q. Chen, J. A. Hawk, Phase-Field Modeling of Corrosion Kinetics under Dual-Oxidants, Modelling and Simulation in Materials Science and Engineering 20 (2012), 035013.

DOI: 10.1088/0965-0393/20/3/035013

Google Scholar

[10] C. Shen, Q. Chen, Y.H. Wen, J.P. Simmons, und Y. Wang. Increasing Length Scale of Quantitative Phase Field Modeling of Concurrent Growth and Coarsening Processes. Scripta Materialia, 50(7): 1029–1034, (2004).

DOI: 10.1016/j.scriptamat.2003.12.027

Google Scholar

[11] B. Chopard, M. Droz, Cellular Automata Modelling of Physical Systems, Cambridge University Press (1998).

Google Scholar

[12] S. G. R. Brown, N. B. Bruce, A 3-Dimensional Cellular Automaton Model of Free, Dendritic Growth, Scripta Metallurgica et Materialia 32 (1995), 241.

DOI: 10.1016/s0956-716x(99)80044-2

Google Scholar

[13] M.F. Zhu, C.P. Hong, A Three Dimensional Modified Cellular Automaton Model for the Prediction of Solidification Microstructures, ISIJ International 42 (2002), 52.

DOI: 10.2355/isijinternational.42.520

Google Scholar

[14] J. Kroc: Application of Cellular Automata Simulations to Modelling of Dynamic Recrystallization, Computational Science ICCS 2339 (2002), 773.

DOI: 10.1007/3-540-46043-8_78

Google Scholar

[15] S. Kundu, M. Dutta, S. Ganguly, S. Chandra, Prediction of Phase Transformation and Microstructure in Steel using Cellular Automaton Technique, Scripta Materialia 50 (2004), 891.

DOI: 10.1016/j.scriptamat.2003.12.007

Google Scholar

[16] G. Guillemot, C.A. Gandin, H. Combeau, Modeling of Macrosegregation and Solidification Grain Structures with a Coupled Cellular Automaton-Finite Element Model, ISIJ International 46(6) (2006), 880.

DOI: 10.2355/isijinternational.46.880

Google Scholar

[17] D. Raabe, Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation, Annual Review of Materials Research 32. 1 (2002), 53.

DOI: 10.1146/annurev.matsci.32.090601.152855

Google Scholar

[18] L. Zhou, X. Wei, A Randomwalk-Cellular Automaton Model of Precipitation of Internal Oxides, Scripta Materialia 37 (1997), 1483.

DOI: 10.1016/s1359-6462(97)00300-x

Google Scholar

[19] L. Zhou, X. Wei, A Randomwalk-Cellular Automaton Simulation of Internal Oxidation and its Transition to External Oxidation, Scripta Materialia 40 (1999), 365.

DOI: 10.1016/s1359-6462(98)00359-5

Google Scholar

[20] K. Jahns, M. Landwehr, J. Wübbelmann, U. Krupp, Numerical Analysis of Internal Oxidation and Nitridation by the Cellular Automata Approach, Oxidation of Metals 79 (2013), 107.

DOI: 10.1007/s11085-012-9334-2

Google Scholar

[21] K. Jahns, M. Landwehr, J. Wübbelmann, U. Krupp, Numerical Analysis of High Temperature Internal Corrosion Mechanisms by the Cellular Automata Approach, Materials and Corrosion 65(3) (2014), 305.

DOI: 10.1002/maco.201307179

Google Scholar

[22] K. Jahns, K. Balinski, M. Landwehr, J. Wübbelmann, U. Krupp, Prediction of High Temperature Corrosion Phenomena by the Cellular Automata Approach, Materials and Corrosion 68(2) (2017), 125.

DOI: 10.1002/maco.201508777

Google Scholar

[23] K. Jahns, K. Balinski, M. Landwehr, J. Wübbelmann, U. Krupp, Modeling of Intergranular Oxidation by the Cellular Automata Approach, Oxidation of Metals (2017), DOI: 10. 1007/s11085-017-9732-6.

DOI: 10.1007/s11085-017-9732-6

Google Scholar

[24] D. di Caprio, J. Stafiej, G. Luciano, L. Arurault, 3D Cellular Automata Simulations of Intra and Intergranular Corrosion, Corrosion Science 112 (2016), 438.

DOI: 10.1016/j.corsci.2016.07.028

Google Scholar

[25] U. Krupp, Innere Nitrierung von Nickelbasislegierungen, Fortschritt-Berichte VDI, Reihe 5, Nr. 529, (VDI-Verlag, Düsseldorf 1998).

Google Scholar

[26] H. Mehrer. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer, Berlin, Deutschland, (2007).

Google Scholar

[27] J. -W. Park und C.J. Altstetter, Metallurgical and Materials Transactions A 18, 43 (1987).

Google Scholar

[28] R. C. Weast, Handbook of Chemistry and Physics 56th Edition, CRC Press, (1975).

Google Scholar