About Thermo-Hydraulic Properties of Open Cell Foams: Pore Scale Numerical Analysis of Strut Shapes

Article Preview

Abstract:

The thermo-physical behavior of open-celled metal foams depends on their microscopic structure. Various ideal periodic isotropic structures of tetrakaidecahedron shapes with constant cross section of the ligament having circular, square, diamond, hexagon and star strut shapes with various orientations are studied. We have proposed a generalized analytical model in order to obtain geometrical parameters correctly and various relationships between different geometrical parameters and porosities (60-95%) are presented. We have also studied the flow parameters namely permeability and inertia coefficient for different strut shapes and various Reynolds number (0.00001<Re<3000). The range of solid to fluid phase conductivity ratios (λsf) studied is from 10 to 30000 for different porosities in local thermal equilibrium condition and an analytical correlation is proposed comprising geometrical parameters of foam structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-200

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] V.V. Calmidi: Ph.D. Thesis, University of Colorado, Boulder, CO, 1998.

Google Scholar

[2] P. Du Plessis, A. Montillet, J. Comiti: Chem.Eng. Science, Vol. 49, pp.3545-3553, (1994).

Google Scholar

[3] L. Giani, G. Groppi: Ind. and Eng. Chemistry Research, Vol. 44 (24), p.9078–9085 (2005b).

Google Scholar

[4] T.J. Lu, H.A. Stone, M.F. Ashby: Acta Materiala, Vol. 46 (10), p.3619–3635 (1998).

Google Scholar

[5] J. GroBe, B. Dietrich, H. Martin, M. Kind: J. Chem. Eng. Tech. Vol. 2, p.307–314 (2008).

Google Scholar

[6] F.C. Buciuman, B. Kraushaar-Czarnetzki: Ind. Eng. Chem. Res. Vol. 42 (2003), p.1863.

Google Scholar

[7] E.A. Moreira, J.R. Coury: Brazilian J. Chem. Eng. Vol. 21 (1), p.23–33 (2004).

Google Scholar

[8] G.I. Garrido, F.C. Patcas, S. Lang: J. Chem. Eng. Sci. Vol. 63, p.5202–5217 (2008).

Google Scholar

[9] D. Edouard, M. Lacroix, C.P. Huu, F. Luck: J. Chem. Eng. Sci. Vol. 144 (2), p.299–311 (2008).

Google Scholar

[10] A. Bhattacharya, V. V. Calmidi: Int.J. Heat Mass Transfer. Vol. 45, p.1017–1031 (2002).

Google Scholar

[11] V. V. Calmidi and R. L. Mahajan: J. Heat Transfer. Vol. 121, p.466–471 (1999).

Google Scholar

[12] R. Singh, H.S. Kasana: Appl. Therm. Eng. Vol. 24, p.1841–1849 (2004).

Google Scholar

[13] K. Boomsma, D. Poulikakos: Int. J. Heat Mass Transfer. Vol. 44, p.827–836 (2001).

Google Scholar

[14] S. Kanaun, O. Tkachenko: Int.J. Eng. Sci. Vol. 46, p.551–571 (2008).

Google Scholar

[15] P. De Jaeger, C. T'Joen, H. Huisseune, B. Ameel: J. Appl. Phy. Vol. 109, 103519 (2011).

Google Scholar

[16] C. Perrot, R. Panneton, X. Olny: J. Appl. Phy. Vol. 101, 113538 (2007)

Google Scholar

[17] E. Brun, J. Vicente, F. Topin, R. Occelli:  Adv. Eng. Mat. Vol. 11 (10), pp.805-810 (2009).

Google Scholar

[18] P. Kumar, J.M. Hugo, F. Topin, J. Vicente: AIP Conf. Proc. Vol. 1453, pp.243-248 (2012)

Google Scholar

[19] J.P. Bonnet, F. Topin, L. Tadrist: Transport in Porous Media, Vol. 73 (2), pp.233-254 (2008).

Google Scholar

[20] B. Madani, F. Topin, L. Tadrist, F. Rigollet: J. Porous Media. Vol. 10 (1), pp.51-70 (2006).

Google Scholar

[21] S. Ergun, A.A. Orning: Ind. Eng. Chem. Res. Vol. 41, p.1179–1184 (1949).

Google Scholar

[23] J.M. Hugo: Ph. D, Aix-Marseille Université (2012).

Google Scholar

[24] S. Whitaker: The Method of Volume Averaging, 13, Kluwer Academic Publisher (1999).

Google Scholar