Interdiffusion Data in Multicomponent Alloys as a Source of Quantitative Fundamental Diffusion Information

Article Preview

Abstract:

Tracer diffusion experiments have historically furnished much of the information about fundamental diffusion processes as embodied in such quantities as tracer correlation factors and vacancy-atom exchange frequencies. As tracer diffusion experiments using radiotracers are rather less often performed nowadays, it is important to be able to process other diffusion data to provide similar fundamental information. New procedures that are primarily based around the random alloy model have been established recently for analyzing chemical diffusion data in binary and ternary alloy systems. These procedures are reviewed here. First, we review the random alloy model, the Sum-rule relating the phenomenological coefficients and three diffusion kinetics formalisms making use of the random alloy. Next, we show how atom-vacancy exchange frequency ratios and then component tracer correlation factors can be extracted from chemical diffusion data in alloy systems. Examples are taken from intrinsic diffusion and interdiffusion data in a number of binary and ternary alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-10

Citation:

Online since:

March 2007

Export:

Price:

[1] A.D. Smigelskas and E.O. Kirkendall: Trans. AIME Vol. 171 (1947), p.130.

Google Scholar

[2] N.L. Peterson in: Diffusion in Solids: Recent Developments, Eds. A.S. Nowick and J.J. Burton, Academic Press, New York 1975, p.115.

Google Scholar

[3] J.N. Mundy in: Diffusion in Solids: Unsolved Problems, Ed. G.E. Murch, Trans Tech Publications, Zurich 1991, p.1.

Google Scholar

[4] N.L. Peterson: J. Nucl. Mater. Vol. 69-70 (1978), p.3.

Google Scholar

[5] A.D. Le Claire: J. Nucl. Mater. Vol. 69-70 (1978), p.70.

Google Scholar

[6] G.E. Murch: Solid State Ionics Vol. 7 (1982), p.177.

Google Scholar

[7] G.E. Murch: J. Phys. Chem. Solids Vol. 42 (1981), p.227.

Google Scholar

[8] G.E. Murch and C.M. Bruff in: Diffusion in Solid Metals and Alloys, Ed. H. Mehrer, LandoltBörnstein New Series, Vol. 26, Springer-Verlag, Berlin, 1990, p.279.

Google Scholar

[9] M.A. Dayananda in: Diffusion in Solid Metals and Alloys, edited by H. Mehrer, LandoltBörnstein New Series, Vol. 26, Springer-Verlag, Berlin, 1990, p.372.

Google Scholar

[10] S.J. Rothman in: Diffusion in Crystalline Solids Eds. G.E. Murch and A.S. Nowick, Academic press, Orlando Florida 1984, p.1.

Google Scholar

[11] I.V. Belova and G.E. Murch: Phil. Mag. Vol. 85 (2005), p.1191.

Google Scholar

[12] J.R. Manning: Phys. Rev. B: Condens. Matter Vol. 4 (1971), p.1111.

Google Scholar

[13] G.E. Murch and I.V. Belova in: Mass and Charge Transport in Inorganic Materials II (Advances in Science and technology Vol. 37), Eds. P. Vincenzini and V. Buscaglia, Techna Faenza Italy 2003, p.99.

Google Scholar

[14] L.K. Moleko and A.R. Allnatt: Phil. Mag. A Vol. 58 (1988), p.677.

Google Scholar

[15] A.R. Allnatt and A.B. Lidiard: Atomic Transport in Solids (Cambridge University Press 1993).

Google Scholar

[16] L.S. Darken: Trans. Am. Inst. Min. (Metall. ) Eng. Vol. 175 (1948), p.184.

Google Scholar

[17] A.B. Lidiard: Acta Metall. Vol. 34 (1986), p.1487.

Google Scholar

[18] L. Zhang, W.A. Oates, and G.E. Murch: Phil. Mag. B Vol. 60 (1989), p.277.

Google Scholar

[19] I.V. Belova and G.E. Murch: Phil. Mag. A Vol. 80 (2000), p.599.

Google Scholar

[20] I.V. Belova and G.E. Murch: Phil. Mag. A Vol. 80 (2000), p.1469.

Google Scholar

[21] L.K. Moleko, A.R. Allnatt and E.L. Allnatt: Phil. Mag. A Vol. 59 (1989), p.141.

Google Scholar

[22] I.V. Belova and G.E. Murch: Def. Dif. For. Vol. 224-225 (2004), p.127.

Google Scholar

[23] I.V. Belova and G.E. Murch: Phil. Mag. Lett. Vol. 81 (2001), p.661.

Google Scholar

[24] Y. Iijima, K. Hirano and M. Kikuchi: Trans. Jpn. Inst. Met. Vol. 23 (1982), p.19.

Google Scholar

[25] N.R. Iorio, M.A. Dayananda and R.E. Grace: Metall. Trans., Vol. 4 (1973), p.1339.

Google Scholar

[26] A.B. Gardner, R.L. Sanders and R.L. Slifkin: Phys. Stat. Sol. Vol. 30 (1968), p.96.

Google Scholar

[27] P.T. Carlson, M.A. Dayananda and R.E. Grace: Metall. Trans. Vol. 3 (1972), p.819.

Google Scholar

[28] J.S. Kirkaldy and D.J. Young: Diffusion in the Condensed State (Inst. of Metals, London 1987).

Google Scholar

[29] J.R. Manning: Metall. Trans. Vol. 1 (1970), p.499.

Google Scholar

[30] I.V. Belova and G.E. Murch: Acta Mater. Vol. 50 (2002), p.4617.

Google Scholar

[31] I.V. Belova, G.E. Murch, R. Filipek and M. Danielewski: Acta Mater. Vol. 53 (2005), p.4613.

Google Scholar

[32] J.G. Duh and M.A. Dayananda: Dif. Def. Data, Vol. 39 (1985), p.1.

Google Scholar

[33] S.J. Rothman, L.J. Nowicki and G.E. Murch: J. Phys. F: Met. Phys. Vol. 10 (1980), p.383.

Google Scholar