Diffusion Measurements of 67Ga in Polycrystalline Magnesium

Article Preview

Abstract:

Gallium grain boundary (GB) diffusion of Ga in polycrystalline magnesium was investigated by radiotracer residual activity technique using 67Ga isotope. The diffusion measurements were carried out under conditions of Harrison’s B-type kinetics in temperature range 639 – 872 K. An approximate evaluation procedure was proposed to calculate both volume diffusion coefficient Dv and GB diffusivity P = s dDb (s is the segregation factor, d the GB width and Db the GB diffusion coefficient). The obtained results showed the following linear Arrhenius relationships: Dv = 1.2 × 10-4 × exp (–134.3 kJ mol-1/RT) m2 s-1 and P = 3.8 × 10-9 × exp (–94.9 kJ mol-1/RT) m3 s-1, where R is universal gas constant and T the temperature. Obtained results were compared with literature data on Mg self-diffusion and with In impurity diffusion in magnesium.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

1287-1292

Citation:

Online since:

April 2005

Export:

Price:

[1] F.H. Froes, D. Eliezer and E. Aghion E: JOM Vol. 50 (1998), p.30.

Google Scholar

[2] B.L. Mordike and T. Ebert: Mat. Sci. Eng. A Vol. 302 (2001), p.37.

Google Scholar

[3] H. Friedrich and S. Schumann: J. Mat. Processing Tech. Vol. 117 (2001), p.276.

Google Scholar

[4] M. Dhahri, J.E. Masse, J.F. Mathieu, G. Barreau and M. Autric: Adv. Eng. Mater. Vol. 3 (2001), p.504.

Google Scholar

[5] R.F. Decker: Adv. Mater. Processes Vol. 9 (1998).

Google Scholar

[25] α-Zr.

Google Scholar

[26] and α-Hf.

Google Scholar

[27] 1. 0 1. 5 2. 0 2. 5 3. 0 3. 5 Tm/T P [m3⋅s-1] 10-14 10-16 10-18 10-20 10-22 10-24 10-26 10-28 α-Zr α-Ti α-Hf Ga in Mg.

Google Scholar

[6] P.G. Shewmon and F.N. Rhines: Trans. AIME Vol. 6 (1954), p.1021.

Google Scholar

[7] P.G. Shewmon: Trans. AIME Vol. 8 (1956), p.918.

Google Scholar

[8] J. Combronde and G. Brebec: Acta Metall. Vol. 19 (1971), p.1393.

Google Scholar

[9] K. Lal: CEA Report R 3136 (1967), p.54.

Google Scholar

[10] J. Combronde and G. Brebec: Acta Metall. Vol. 20 (1972), p.37.

Google Scholar

[11] V.F. Yerko, V.F. Zeleniskiy and V.S. Krasnorutskiy: Fiz. Metal. Metaloved. Vol. 22 (1966), p.112.

Google Scholar

[12] L.V. Pavlinov, A.M. Gladishev and V.N. Bykov: Fiz. Metal. Metaloved. Vol. 26 (1968), p.823.

Google Scholar

[13] E.M.T. Njikoep, M. Salamon and H. Mehrer: Def. Dif. Forum Vol. 194-199 (2000), p.1581.

Google Scholar

[14] J. Cermak and V. Rothova: Intermetallics Vol. 10 (2002), p.765.

Google Scholar

[15] P. L. Gruzin: Doklad Akad. Nauk SSSR Vol. 86 (1952), p.238.

Google Scholar

[16] J. Crank: Mathematics of Diffusion (Clarendon Press, Oxford 1964).

Google Scholar

[17] I. Kaur and W. Gust: Fundamentals of Grain and Interphase Boundary Diffusion (Ziegler Press, Stuttgart 1989).

Google Scholar

[18] A.D. Le Claire: Brit. J. Appl. Phys. Vol. 14 (1963), p.351.

Google Scholar

[19] S.H. Levine and C.J. MacCallum: J. Appl. Phys. Vol. 31 (1960), p.595.

Google Scholar

[20] A.L. Conner, H.F. Atwater, E.H. Plassman and J.H. McCrary: Phys. Rev. A Vol. 1 (1970), p.539.

Google Scholar

[21] L.G. Harrison: Trans. Faraday Soc. Vol. 57 (1961), p.1191.

Google Scholar

[22] G. Neumann and C. Tuijn: Solid State Phenomena Vol. 88 (2002), p.121.

Google Scholar

[23] J.C. Slater: J. Chem. Phys Vol. 39 (1964), p.3199.

Google Scholar

[24] Chr. Herzig, T. Wilger, T. Przeorski, F. Hisker and S.V. Divinski: Intermetallics Vol. 9 (2001), p.431.

DOI: 10.1016/s0966-9795(01)00022-x

Google Scholar

[25] K. Vieregge and Chr. Herzig: J. Nucl. Mater. Vol. 173 (1990), p.118.

Google Scholar

[26] F. Güthof, Y. Mishin and Chr. Herzig: Z. Metallkd. Vol. 84 (1993), p.584.

Google Scholar

[27] T.B. Massalski: Binary alloy phase diagrams, Second edition plus updates on CD-ROM (ASM International, Materials Park, OH 1996).

Google Scholar

[28] S. Schimdt, W. Sigle, W. Gust and M. Rühle: Z. Metallkd. Vol. 93 (2002), p.428.

Google Scholar

[29] R.C. Hugo and R.G. Hoagland: Scripta Mater. Vol. 38 (1998), p.523.

Google Scholar

[30] E. Pereiro-López, W. Ludwig, D. Bellet and J. Baruchel: J. Nucl. Instrum. Meth. B Vol. 200 (2003), p.333.

Google Scholar

[31] M. Köpers, D. Derdau, M. Friesel and Chr. Herzig: Def. Dif. For. Vol. 143-147 (1997), p.43.

Google Scholar