A Direct Comparison of Glassy Carbon and PEDOT-PSS Electrodes for High Charge Injection and Low Impedance Neural Interfaces

Article Preview

Abstract:

For neural applications, materials able to interface with the brain without harming it while recording high-fidelity signals over long-term implants are still sought after. Glassy Carbon (GC) and Poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT-PSS) have proved to be promising materials for neural interfaces as they show – compared to conventional metal electrodes - higher conductivity, better electrochemical stability, very good mechanical properties and therefore seem to be very promising for in vivo applications. We present here, for the first time, a direct comparison between GC and PEDOT-PSS microelectrodes in terms of biocompatibility, electrical and electrochemical properties as well as in vivo recording capabilities, using electrocorticography microelectrode arrays located on flexible polyimide substrate. The GC microelectrodes were fabricated using a traditional negative lithography processes followed by pyrolysis. PEDOT-PSS was selectively electrodeposited on the desired electrodes. Electrochemical performance of the two materials was evaluated through electrochemical impedance spectroscopy and cyclic voltammetry. Biocompatibility was assessed through in-vitro studies evaluating cultured cells viability. The in vivo performance of the GC and PEDOT-PSS electrodes was directly compared by simultaneously recording neuronal activity during somatosensory stimulation in Long-Evans rats. We found that both GC and PEDOT-PSS electrodes outperform metals in terms of electrochemical performance and allow to obtain excellent recordings of somatosensory evoked potentials from the rat brain surface. Furthermore, we found that both GC and PEDOT-PSS substrates are highly biocompatible, confirming that they are safe for neural interface applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-76

Citation:

Online since:

October 2016

Export:

Price:

* - Corresponding Author

[1] S.F. Cogan, Neural stimulation and recording electrodes, Annual Review of Biomedical Engineering, 10 (2008) 275-309.

DOI: 10.1146/annurev.bioeng.10.061807.160518

Google Scholar

[2] A. Ritaccio, P. Brunner, M. C. Cervenka, N. Crone, C. Guger, E. Leuthardt, R. Oostenveld, W. Stacey, G. Schalk, Proceedings of the First International Workshop on Advances in Electrocorticography., Epilepsy Behav. 19 (2010) 204–215.

DOI: 10.1016/j.yebeh.2010.08.028

Google Scholar

[3] A. Samii, A. Koerbel, S.K. Rosahl, M. Tatagiba, M. Samii, A. Bricolo, R. W. Porter, R. F. Spetzler, R. Briggs, et al. Preservation of Function in Vestibular Schwannoma, Surgery. Neurosurgery 60 (2007) 124–128.

DOI: 10.1227/01.neu.0000249245.10182.0d

Google Scholar

[4] M. Dümpelmann, J. Fell, J. Wellmer, H. Urbach, C.E. Elger, 3D Source Localization Derived from Subdural Strip and Grid Electrodes: a Simulation Study, Clin. Neurophysiol. 120 (2009) 1061–1069.

DOI: 10.1016/j.clinph.2009.03.014

Google Scholar

[5] N. A Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C.M. Lieber, M. Prato, et al., Nanomaterials for Neural Interfaces, Adv. Mater. 21, (2009) 3970–4004.

DOI: 10.1002/adma.200801984

Google Scholar

[6] M. Asplund, T. Nyberg, and O. Inganas, Electroactive polymers for neural interfaces, Polymer Chemistry, 1(9) (2010) 1374-1391.

Google Scholar

[7] E. Castagnola, A. Ansaldo, L. Fadiga, D. Ricci, Chemical vapour deposited carbon nanotube coated microelectrodes for intracortical neural recording, physica status solidi (b) 247 (2010) 2703-2707.

DOI: 10.1002/pssb.201000217

Google Scholar

[8] E. Castagnola, L. Maiolo, E. Maggiolini, A. Minotti, M. Marrani, F. Maita, A. Pecora, G. N. Angotzi, A. Ansaldo, M. Boffini, L. Fadiga, G. Fortunato, D. Ricci, PEDOT-CNT-coated low-impedance, ultra-flexible, and brain-conformable micro-ECoG arrays, Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 23(3) (2015).

DOI: 10.1109/tnsre.2014.2342880

Google Scholar

[9] S. Kassegne, M. Vomero, R. Gavuglio, M. Hirabayashi, E. Özyilmaz,S. Nguyen, J. Rodriguez, E. Özyilmaz, P. van Niekerk, A. Khosla, Electrical impedance, electrochemistry, mechanical stiffness, and hardness tunability in glassy carbon MEMS µECoG electrodes, Microelectronic Engineering 133 (2015).

DOI: 10.1016/j.mee.2014.11.013

Google Scholar

[10] J. J. VanDersar, A. Mercanzini, P. Renaud, Integration of 2D and 3D Thin Film Glassy Carbon Electrode Arrays for Electrochemical Dopamine Sensing in Flexible Neuroelectronic Implants, Adv. Funct. Mater. 25 (2015), 78–84.

DOI: 10.1002/adfm.201402934

Google Scholar

[11] Vomero, M., V. Nguyen, N. Gong, M. Hirabayashi, A. Cinopri, K. Logan, A. Moghadasi, P. Varma, P. van Niekerk, and S. Kassegne. Novel Pattern Transfer Technique for Mounting Glassy Carbon Microelectrodes on Polymeric Flexible Substrates., Journal of Micromechanics and Microengineering 26 (2016).

DOI: 10.1088/0960-1317/26/2/025018

Google Scholar

[12] K. A. Ludwig, J. D. Uram, J. Yang, D.C. Martin, D.R. Kipke, Chronic Neural Recordings Using Silicon Microelectrode Arrays Electrochemically Deposited with a Poly(3, 4- ethylenedioxythiophene) (PEDOT) Film. J. Neural Eng. 3 (2006) 59–70.

DOI: 10.1088/1741-2560/3/1/007

Google Scholar

[13] D. Khodagholy, T. Doublet, M. Gurfinkel, P. Quilichini, E. Ismailova, P. Leleux, T. Herve, S. Sanaur, C. Bernard , G.G. Malliaras, Highly Conformable Conducting Polymer Electrodes for In Vivo Recordings, Adv. Mater., 23 (2011) H268–H272.

DOI: 10.1002/adma.201102378

Google Scholar

[14] J.P. Harris, A.E. Hess, S.J. Rowan, C. Weder, C. A Zorman, D. J Tyler, J. R Capadona, In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes, Journal of Neural Engineering,. 8(4) 2011, 046010.

DOI: 10.1088/1741-2560/8/4/046010

Google Scholar

[15] G. Paxinos, & G. Watson, The Rat Brain in Stereotaxic Coordinates, 6th Edition Academic Press (2007).

Google Scholar

[16] Agrawal. G, Thakor. N. V., All, A.H., Evoked potential versus behavior to detect minor insult to the spinal cord in a rat model Journal of Clinical Neuroscience 16 (2009) 1052–1055.

DOI: 10.1016/j.jocn.2008.08.009

Google Scholar

[17] A. Delorme and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J Neurosci Methods 134 (2004) 9-21.

DOI: 10.1016/j.jneumeth.2003.10.009

Google Scholar

[18] D.T. Sawyer, A. Sobkowiak, J. L. Roberts, Electrochemistry for Chemists (Second ed. ). New York: John Wiley & Sons. (1995).

Google Scholar

[19] A.A. Guex, N Vachicouras, A.E. Hight, M.C. Brown, D. J Lee, S.P. Lacour, Conducting polymer electrodes for auditory brainstem implants, Journal of materials chemistry B, Materials for biology and medicine, 3(25), (2015) 5021-5027.

DOI: 10.1039/c5tb00099h

Google Scholar

[20] X. T. Cui, D.D. Zhou, Poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation, IEEE Trans. Neural Syst. Rehabil. Eng. 15, (2007) 502–508.

DOI: 10.1109/tnsre.2007.909811

Google Scholar

[21] T. Nyberg, A. Shimada, K. Torimitsu, Ion conducting polymer microelectrodes for interfacing with neural networks, J. Neurosci. Methods 160, (2007) 16–25.

DOI: 10.1016/j.jneumeth.2006.08.008

Google Scholar