Recent Developments in Bio-Inspired Sensors Fabricated by Additive Manufacturing Technologies

Article Preview

Abstract:

In our work on micro-fabricated hair-sensors, inspired by the flow-sensitive sensors found on crickets, we have made great progress. Initially delivering mediocre performance compared to their natural counter parts they have evolved into capable sensors with thresholds roughly a factor of 30 larger than of their natural equivalents. Due to this disparity, and also instigated by our work on fly-halteres inspired rotation rate sensors and desert locust ear-drum mimicking membrane struc- tures, we have analysed the differences in performance between natural and man-made sensors. We conclude that two major drawbacks of main-stream micro-fabrication are the lack of easily applicable soft materials, as well as the limitations imposed by photolithography based fabrication with respect to freeform 3D shaping of structures. Currently we are targeting additive manufacturing for biomimetic sensor structures and in this contribution we report initial results of 3D printed sensor structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-206

Citation:

Online since:

October 2016

Export:

Price:

* - Corresponding Author

[1] E. Johnson, R. Bonser, and G. Jeronimidis, Recent advances in biomimetic sensing technologies, Philos. Trans. A. Math. Phys. Eng. Sci., vol. 367, no. 1893, pp.1559-69, (2009).

DOI: 10.1098/rsta.2009.0005

Google Scholar

[2] M. Mastrangeli, S. Abbasi, C. Varel, C. Van Hoof, J. -P. Celis, and K. F. Böhringer, Self-assembly from milli- to nanoscales: methods and applications, J. Micromech. Microeng., vol. 19, p.083001, Jul. (2009).

DOI: 10.1088/0960-1317/19/8/083001

Google Scholar

[3] H. S. Khoo, C. Lin, S. -H. Huang, and F. -G. Tseng, Self-Assembly in Micro- and Nanofluidic Devices: A Review of Recent Efforts', Micromachines, vol. 2, no. 1, p.17, 48, Feb. (2011).

DOI: 10.3390/mi2010017

Google Scholar

[4] C. Toumey, 35 atoms that changed the nanoworld, Nature Nanotechnology 5, 239 - 241 (2010).

DOI: 10.1038/nnano.2010.61

Google Scholar

[5] OpenScad webpage: http: /www. openscad. org.

Google Scholar

[6] C. Gosselin, R. Duballet, P. Roux, N. Gaudilliére, J. Dirrenberger and P. Morel, Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders, Mater. Des., vol. 100, pp.102-109, (2016).

DOI: 10.1016/j.matdes.2016.03.097

Google Scholar

[7] V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, Organ printing: Computeraided jet-based 3D tissue engineering, Trends Biotechnol., vol. 21, no. 4, pp.157-161, (2003).

DOI: 10.1016/s0167-7799(03)00033-7

Google Scholar

[8] S. Hengsbach and A. D. Lantada, Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies, Biomed. Microdevices, vol. 16, no. 4, pp.617-627, (2014).

DOI: 10.1007/s10544-014-9864-2

Google Scholar

[9] N. Meisel, A. Elliott and C. Williams, A procedure for creating actuated joints via embedding shape memory alloys in PolyJet 3D printing, J. Intell. Mater. Syst. Struct., vol. 26, pp.1498-1512, (2015).

DOI: 10.1177/1045389x14544144

Google Scholar

[10] D. Espalin, D. W. Muse, E. MacDonald, and R. B. Wicker, 3D Printing multifunctionality: Structures with electronics, Int. J. Adv. Manuf. Technol., vol. 72, no. 5-8, pp.963-978, (2014).

DOI: 10.1007/s00170-014-5717-7

Google Scholar

[11] J. Muth, D. Vogt, R. Truby, Y. Meng, D. Kolesky, R. Wood, and J. Lewis, Embedded 3D printing of strain sensors within highly stretchable elastomers, Adv. Mater., vol. 26, no. 36, pp.6307-6312, (2014).

DOI: 10.1002/adma.201400334

Google Scholar

[12] Voxel8. co. Page visited May (2016).

Google Scholar

[13] HP 3D printing with Multi Jet Fusion technology, website HP, visited May 16, (2016).

Google Scholar

[14] R. Feng and R. Farris, Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings, J. Micromechanics Microengineering, vol. 13, no. 1, pp.80-88, (2003).

DOI: 10.1088/0960-1317/13/1/312

Google Scholar

[15] L. Taoran, S. Bo, L. Qi, R. A. Bahr, S. Moscato, W. Ching-Ping, and M. M. Tentzeris, A novel strain sensor based on 3D printing technology and 3D antenna design, 2015 IEEE 65th Electron. Components Technol. Conf., pp.981-986, (2015).

DOI: 10.1109/ectc.2015.7159714

Google Scholar

[16] C. R. Rocha, A. R. T. Perez, and D. a Roberson, Novel ABS-based binary and ternary polymer blends for material extrusion 3D printing, J. Mater. Res., vol. 29, no. 17, pp.1859-1866, (2014).

DOI: 10.1557/jmr.2014.158

Google Scholar

[17] J. Tautz, 1979, Reception of particle oscillation in a medium - an unorthodox sensory capacity, Naturwissenschaften 66, pp.452-461.

DOI: 10.1007/bf00399002

Google Scholar

[18] T. Shimozawa, J. Murakami and T. Kumagai, 2003, Cricket and wind receptors: thermal noise for the highest sensitivity known, Sensors and Sensing in Biology and Engineering ed Barth, Humphrey and Secomb (Vienna: Springer), chapter 10.

DOI: 10.1007/978-3-7091-6025-1_10

Google Scholar

[19] J. Humphrey et al, 1993, Dynamics of arthropod filiform hairs. I. Mathematical modeling of the hair and air motions, Phil. Trans.: Biol. Sci. 340, pp.423-444.

DOI: 10.1098/rstb.1993.0083

Google Scholar

[20] J. A. C. Humphrey and F. G. Barth, Medium Flow-Sensing Hairs: Biomechanics and Models, in Advances in Insect Physiology, vol. 34, no. 07, 2007, pp.1-80.

DOI: 10.1016/s0065-2806(07)34001-0

Google Scholar

[21] Y. Yang, N. Nguyen, N. Chen, M. Lockwood, C. Tucker, H. Hu, H. Bleckmann, C. Liu, and D. L. Jones, Artificial lateral line with biomimetic neuromasts to emulate fish sensing, Bioinspiration and Biomimetics, vol. 5, no. 1, p.16001, Mar. (2010).

DOI: 10.1088/1748-3182/5/1/016001

Google Scholar

[22] G. Krijnen, M. Dijkstra, J. Van Baar, S. Shankar, W. Kuipers, R. De Boer, D. Altpeter, T. Lammerink, and R. Wiegerink, MEMS based hair flow-sensors as model systems for acoustic perception studies, Nanotechnology, vol. 17, no. 4, pp. S84-S89, (2006).

DOI: 10.1088/0957-4484/17/4/013

Google Scholar

[23] J. Casas, C. Liu, and G. Krijnen, Biomimetic Flow Sensors, Encycl. Nanotechnol, pp.264-276, (2013).

Google Scholar

[24] J. Tao and X. Yu, Hair flow sensors: from bio-inspiration to bio-mimicking - a review, Smart Mater. Struct., vol. 21, no. 11, p.113001, (2012).

DOI: 10.1088/0964-1726/21/11/113001

Google Scholar

[25] T. Kumagai, T. Shimozawa, and Y. Baba, Structural scaling and functional design of the cercal wind-receptor hairs of cricket, J. Comp. Physiol. - A, vol. 183, no. 2, pp.171-186, (1998).

DOI: 10.1007/s003590050245

Google Scholar

[26] H. Droogendijk, J. Casas, T. Steinmann, and G. Krijnen, Performance assessment of bio-inspired systems: flow sensing MEMS hairs, Bioinspir. Biomim., vol. 10, no. 1, p.016001, (2015).

DOI: 10.1088/1748-3190/10/1/016001

Google Scholar

[27] G. Krijnen, A. Floris, M. Dijkstra, T. Lammerink, and R. Wiegerink, Biomimetic micromechanical adaptive flow-sensor arrays, Proc. SPIE, vol. 6592, pp.1-15, May (2007).

DOI: 10.1117/12.721807

Google Scholar

[28] N. Izadi, M. J. de Boer, J. W. Berenschot, and G. Krijnen, Fabrication of superficial neuromast inspired capacitive flow sensors, J. Micromechanics Microengineering, vol. 20, no. 8, p.085041, Aug. (2010).

DOI: 10.1088/0960-1317/20/8/085041

Google Scholar

[29] S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, D. A. Hutchins, A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors, Plos One, 2012, Volume 7, 11, e49365, doi: 10. 1371/journal. pone. 0049365.

DOI: 10.1371/journal.pone.0049365

Google Scholar

[30] S. E. Bakarich, R. Gorkin III, M. in het Panhuis, Geoffrey M. Spinks, 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels, Macromolecular Rapid Communications, 2015, 36, pp.1211-1217, doi: 10. 1002/marc. 201500079.

DOI: 10.1002/marc.201500079

Google Scholar

[31] W. C. Van Buskirk, R. G. Watts, and Y. K. Liu, The fluid mechanics of the semicircular canals, J. Fluid Mech., vol. 78, no. 01, p.87, (1976).

DOI: 10.1017/s0022112076002346

Google Scholar

[32] A. Shkel, An electronic prosthesis mimicking the dynamic vestibular function, Proc. SPIE 6174, Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 617414 (April 11, 2006); doi: 10. 1117/12. 659293.

DOI: 10.1117/12.659293

Google Scholar

[33] J. Groenesteijn, H. Droogendijk, M. De Boer, R. Sanders, R. Wiegerink, and G. Krijnen, An angular acceleration sensor inspired by the vestibular system with a fully circular fluid-channel and thermal read-out, Proc. IEEE Int. Conf. Micro Electro Mech. Syst., no. 3, pp.696-699, Jan. (2014).

DOI: 10.1109/memsys.2014.6765736

Google Scholar

[34] J. van Tiem, J. Groenesteijn, R. Sanders, and G. Krijnen, 3D Printed Bio-inspired Angular Acceleration Sensor, Proc. IEEE Sensors Conf. 2015, pp.1430-1433.

DOI: 10.1109/icsens.2015.7370543

Google Scholar

[35] J. Solomon and M. Hartmann, Biomechanics: robotic whiskers used to sense features., Nature, vol. 443, no. 7111, p.525, Oct. (2006).

DOI: 10.1038/443525a

Google Scholar

[36] Y. W. Yu, M. Graff, and M. Hartmann, Mechanical responses of rat vibrissae to airflow, J. Exp. Biol., vol. 219, no. 7, pp.937-948, (2016).

DOI: 10.1242/jeb.126896

Google Scholar

[37] G. Dehnhardt, W. Hanke, S. Wieskotten, Y. Krüger and L. Miersch, Hydrodynamic Perception in Seals and Sea Lions', in 'Flow Sensing in Air and Water, ed. Bleckmann et. al, pp.127-146, (2014).

DOI: 10.1007/978-3-642-41446-6_6

Google Scholar

[38] J. Birdwell, J. Solomon, M. Thajchayapong, M. Taylor, M. Cheely, R. Towal, J. Conradt, and M. Hartmann, Biomechanical models for radial distance determination by the rat vibrissal system, J. Neurophysiol., vol. 98, no. 4, pp.2439-2455, (2007).

DOI: 10.1152/jn.00707.2006

Google Scholar

[39] A. Cheer and M. Koehl, Fluid flow through filtering appendages of insects, Math. Med. Biol., vol. 4, no. 3, pp.185-199, (1987).

DOI: 10.1093/imammb/4.3.185

Google Scholar

[40] J. Humphrey and H. Haj-hariri, Detection and Real Time Processing of Odor Plume Information by Arthropods in Air and Water, no. 1984, pp.47-67, (2002).

Google Scholar

[41] C. Loudon and M. a Koehl, Sniffing by a silkworm moth: wing fanning enhances air penetration through and pheromone interception by antennae, J. Exp. Biol., vol. 203, no. Pt 19, pp.2977-2990, (2000).

DOI: 10.1242/jeb.203.19.2977

Google Scholar

[42] N. Ando, S. Emoto, and R. Kanzaki, Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay, Bioinspir. Biomim., vol. 8, no. 1, p.016008, (2013).

DOI: 10.1088/1748-3182/8/1/016008

Google Scholar