Characterization of Bi2212 Superconductor Bulk Samples by Digital Image Processing

Article Preview

Abstract:

The use of superconductors of high critical temperatures in applied superconductivity leads to higher operation temperatures and economy of cryogenic fluids. High temperature superconductor materials exhibits limited transport properties due to grain boundary weak-links and anisotropy on the critical currents. The texturing development in these superconductors decreases in an efficient way the number of high-angle grain boundaries, increasing the values of critical current densities (Jc). In this research the size grain distribution characterization of Bi2212 superconductor bulk samples heat treated under the influence of an applied external magnetic field of 5T was carried out combining processing and images analysis obtained by SEM and statistical methodologies. The objective is to investigate influence of an external magnetic field applied during the heat treatment profiles on the texturing of Bi2Sr2CaCu2O8+δ (Bi2212) bulk by using complementary analytical techniques.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-133

Citation:

Online since:

July 2014

Export:

Price:

* - Corresponding Author

[1] A.R. Bigansolli, Dr. Thesis, DEMAR-FAENQUIL, Lorena, SP, Brazil (2005).

Google Scholar

[2] C. Pritsos, E. Kontonasakia, X. Chatzistavrou, L. Papadopoulou, F. Pappas, P. Koidis, K.M. Paraskevopoulos, Studying morphological characteristics of thermally treated bioactive glass ceramic using image analysis, J. Eur. Ceram. Soc. 25 (2005).

DOI: 10.1016/j.jeurceramsoc.2004.04.004

Google Scholar

[3] R.F. Marcomini, D.M.P.F. de Souza, Microstructural characterization of ceramic materials using the image digital processing software Image J, Cerâmica 57 (2011) 100-105.

Google Scholar

[4] N. Takano, M. Zako, F. Kubo, K. Kimura, Microstructure-based stress analysis and evaluation for porous ceramics by homogenization method with digital image-based modeling, Int. J. Solids and Structures 40 (2003) 1225-1242.

DOI: 10.1016/s0020-7683(02)00642-x

Google Scholar

[5] A.L. Horovistiz, E.N.S. Muccillo, Quantification of microstructural features in gadolinia-doped ceria containing co-additives by digital image analysis, J. Eur. Ceram. Soc. 31 (2011) 1431-1438.

DOI: 10.1016/j.jeurceramsoc.2011.02.022

Google Scholar

[6] A. Mazzoli, O. Favoni, Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program. Powder Technol. 225 (2012) 65-71.

DOI: 10.1016/j.powtec.2012.03.033

Google Scholar

[7] T.G. Cruz. P.H.F. Pereira, M.L.C.P. Silva, M.O.H. Cioffi, H.J.C. Voorwald, Quantitative microscopy characterization of hydrous niobium phosphate into bleached cellulose, Micron 41, 5 (2010) 402-411.

DOI: 10.1016/j.micron.2010.02.012

Google Scholar

[8] M. Dadkhah, M. Peglow, E. Tsotsas, Characterization of the internal morphology of agglomerates produced in a spray fluidized bed by X-ray tomography, Powder Technol. 228 (2012) 349-358.

DOI: 10.1016/j.powtec.2012.05.051

Google Scholar

[9] K.D. Zilnyk, G.S. Leite, H.R.Z. Sandim, P.R. Rios, Grain growth inhibition by connected porosity in sintered niobium.

DOI: 10.1016/j.actamat.2013.06.027

Google Scholar

[10] E. Maire, P. Colombo, J. Adrien, L. Babout, L. Biasetto, Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography, J. Eur. Ceram. Soc. 27 (2007) 1973-(1981).

DOI: 10.1016/j.jeurceramsoc.2006.05.097

Google Scholar

[12] R.C. Gonzalez, R.E. Woods, Digital Image Processing, Ed. Addison Wesley, USA, (1993).

Google Scholar

[13] A. Ortiz, G. Oliver, On the Use of the Overlapping Area Matrix For Image Segmentation Evaluation: A Survey And New Performance Measures, Pattern Recognition Lett. 27 (2006) 1916-(1926).

DOI: 10.1016/j.patrec.2006.05.002

Google Scholar

[14] M. Seul, L. O'gorman, M. J. Sammon, Practical Algorithmos For Image Analysis- Description, Example And Code, Ed. Cambridge University Press (2006) 76-78.

Google Scholar

[15] J.C. Russ, The Image Processing Handbook, CRC Press (1998) 67-78.

Google Scholar

[16] J. Bernd, Practical Handbook on Image Processing For Scientific Applications, CRC Press (1997) 23-34.

Google Scholar