Interface Reaction Thermodynamics of AgCuTi Brazing Filler Metal and Alumina Ceramic

Article Preview

Abstract:

In this work, the interface reaction between Al2O3 ceramic and Ag70.5Cu27.5Ti2 brazing filler metal at 845-860°C was investigated. Based on the data of thermodynamics and kinetics, the Gibbs free energies of the main interface reactions in the real brazing system condition were calculated. But the values of normal equilibrium reaction condition and the real interface reaction brazing system were different; and the main influential factor was the brazing temperature, and the system vacuum of brazing condition can lead the change of equilibrium constant (Kα). The results revealed that the high temperature and vacuum active brazing is a non-equilibrium interface reaction especially to titanium alloy, the vacuum and alloy liquid solution are beneficial to the brazing process, and the by-product formation of titanium-oxygen are affected by the diffusion process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1239-1246

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] R. Soltani Tashi, S. A. A. Akbari Mousavi, M. Mazar Atabaki, Diffusion brazing of Ti–6Al–4V and austenitic stainless steel using silver-based interlayer, Materials and Design. 54 (2014) 161-167.

DOI: 10.1016/j.matdes.2013.07.103

Google Scholar

[2] Tuan Zaharinie, Raza Moshwan, Farazila Yusof, M. Hamdi, Tadashi Ariga, Vacuum brazing of sapphire with Inconel 600 using Cu/Ni porous composite interlayer for gas pressure sensor application, Materials and Design. 54 (2014) 375-381.

DOI: 10.1016/j.matdes.2013.08.046

Google Scholar

[3] Qiaoli Lin, Ran Sui; Wetting of B4C by molten Ni–Ti alloys at 1753 K, Journal of Alloys and Compounds. 577 (2013) 37-43.

DOI: 10.1016/j.jallcom.2013.04.164

Google Scholar

[4] W. J. Zhu, J. Wang, H.S. Liu, Z. P. Jin, C. Leinenbach, Modeling and simulation of the TiC reaction layer growth during active brazing of diamond using DICTRA, Computational Materials Science. 78 (2013) 74-82.

DOI: 10.1016/j.commatsci.2013.05.025

Google Scholar

[5] K. L. Lin, Mrityunjay Singh, Rajiv Asthana, C. H. Lin, Interfacial and mechanical characterization of yttria-stabilized zirconia (YSZ) to stainless steel joints fabricated using Ag–Cu–Ti interlayers, Ceramics International. 40 (2014) 2063-(2071).

DOI: 10.1016/j.ceramint.2013.07.119

Google Scholar

[6] Z. W. Yang, L. X. Zhang, Y. C. Chen, J. L. Qi, P. He, J. C. Feng, Interlayer design to control interfacial microstructure and improve mechanical properties of active brazed Invar/SiO2–BN joint, Materials Science and Engineering: A. 575 (2013).

DOI: 10.1016/j.msea.2013.03.055

Google Scholar

[7] L. C. Tsao, Microstructural characterization and mechanical properties of microplasma oxidized TiO2/Ti joints soldered using Sn3. 5Ag4Ti(Ce) active filler; Journal of Materials Science, Materials in Electronics. 25 (2014) 233-243.

DOI: 10.1007/s10854-013-1577-4

Google Scholar

[8] M. X. Yang, P. He, T. S. Lin, Effect of Brazing Conditions on Microstructure and Mechanical Properties of Al2O3/Ti–6Al–4V Alloy Joints Reinforced by TiB Whiskers, Journal of Materials Science & Technology. 29 (2013) 961-970.

DOI: 10.1016/j.jmst.2013.05.009

Google Scholar

[9] W. F. Ding, Q. Miao, J. H. Xu, Z. Z. Chen, C. Y. Yang, Y. C. Fu, Preparation mechanism and grinding performance of single-layer self-lubrication brazed CBN abrasive wheels, The International Journal of Advanced Manufacturing Technology. 68 (2013).

DOI: 10.1007/s00170-013-4725-3

Google Scholar

[10] H. L. Ning, Z. T. Geng, J. S. Ma, F. X. Huang, Z. D. Han, J. Y. Cui, Research of alumina and brazing filler metal interface, Materials Science Forum. 423-425 (2003) 495-500.

DOI: 10.4028/www.scientific.net/msf.423-425.495

Google Scholar

[11] H. L. Ning, Z. T. Geng, J. S. Ma, F. X. Huang, Z. Y. Qian, Z. D. Han, Joining of sapphire and hot pressed Al2O3 using Ag70. 5Cu27. 5Ti2 filler metal, Ceramics international. 29 (2003), 689-694.

DOI: 10.1016/s0272-8842(02)00218-3

Google Scholar

[12] H. Q. Hao, Ph. D. dissertation, Xi'an Jiaotong University, April (1995).

Google Scholar

[13] D. L. Ye, Practical handbook of thermodynamic data of inorganic, Beijing, Metallurgical Industry Press (1981).

Google Scholar

[14] L. Z. Chen, Physical chemistry, Shanghai, Shanghai Scientific &Technical Publishers (1988).

Google Scholar

[15] D. C. Liu, The alumina ceramics and its sintering, China Ceram. 34 (1998) 13-15.

Google Scholar

[16] L. Q. Gao, The art for practical technology of ceramic to metal seal, Beijing, Chemical industry press (2005).

Google Scholar

[17] H. Lu, C. L. Bao, D. H. Shen, X. J. Zhang, Y. D. Cui, Z. D. Lin, Study of the Ti/Al2O3 interface, Journal of Materials Science. 30 (1995) 339-346.

DOI: 10.1007/bf00354393

Google Scholar

[18] S. Yamaguchi, K. Hiraga, M. Hirabayashi, Interstitial Order-Disorder Transformation in the Ti-O Solid Solution IV: A Neutron Diffraction Study, Journal of the physical society of Japan. 28 (1970) 1014-1023.

DOI: 10.1143/jpsj.28.1014

Google Scholar

[19] J. L. Murray, Phase Diagrams of Binary Titanium Alloys, ASM International, Materials Park, OH, (1987).

Google Scholar

[20] G. P. Kelkar, K. E. Spear, A. H. Carim, Thermodynamic evaluation of reaction products and layering in brazed alumina joints, Journal of Materials Research. 9 (1994) 2244-2250.

DOI: 10.1557/jmr.1994.2244

Google Scholar