Surface Modification of Titanium and its Alloys for Biomedical Application

Article Preview

Abstract:

Titanium and its alloys have excellent properties and are promising biomaterial in medical engineering field. A bioactive surface on a Ti substrate is a prerequisite for great performance and long service life of implants. Based on the mechanism for inducing cell/tissue responses, three kinds of methods, namely morphological, physicochemical and biochemical methods, are reviewed in this paper. Hybrid methods that integrate individual methods or have additional functions are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

1115-1120

Citation:

Online since:

February 2014

Export:

Price:

[1] T.M. Coelho, E.S. Nogueira, W.R. Weinand, W.M. Lima, A. Steimacher, A.N. Medina, M.L. Baesso and A.C. Bento: Thermal Properties of Natural Nanostructured Hydroxyapatite Extracted from Fish Bone Waste, Journal of Applied Physics, vol. 101 (2007).

DOI: 10.1063/1.2718866

Google Scholar

[2] B.V. Krishna, S. Bose and A. Bandyopadhyay: Low Stiffness Porous Ti Structures for Load-Bearing Implants, Acta Biomaterialia, vol. 3 (2007) pp.997-1006.

DOI: 10.1016/j.actbio.2007.03.008

Google Scholar

[3] ASM International: Materials and Coatings for Medical Devices: Cardiovascular: ASM International, (2009).

Google Scholar

[4] J.M.J. Donachie: Titanium: A Technical Guide 2nd ed.: ASM International, (2000).

Google Scholar

[5] E. Santos Jr, N.K. Kuromoto and G.A. Soares: Mechanical Properties of Titania Films Used as Biomaterials, Materials Chemistry and Physics, vol. 102 (2007) pp.92-97.

DOI: 10.1016/j.matchemphys.2006.11.010

Google Scholar

[6] H. Assender, V. Bliznyuk and K. Porfyrakis: How Surface Topography Relates to Materials' Properties, Science, vol. 297 (2002) pp.973-976.

DOI: 10.1126/science.1074955

Google Scholar

[7] S. Kakehi, S. Takeda and M. Nakamura: Effect of Titanium Surface Roughness on the Cytocompatibility of Osteoblast-Like Cells, Journal of Oral Tissue Engineering, vol. 4 (2006) pp.77-88.

Google Scholar

[8] T.S.N. Silva, D.C. Machado, C. Viezzer, A.N. Silva Júnior and M.G. d. Oliveira: Effect of Titanium Surface Roughness on Human Bone Marrow Cell Proliferation and Differentiation: An Experimental Study, Acta Cirurgica Brasileira, vol. 24 (2009).

DOI: 10.1590/s0102-86502009000300007

Google Scholar

[9] J.I. Rosales-Leal, M.A. Rodríguez-Valverde, G. Mazzaglia, P.J. Ramón-Torregrosa, L. Díaz-Rodríguez, O. García-Martínez, M. Vallecillo-Capilla, C. Ruiz and M.A. Cabrerizo-Vílchez: Effect of Roughness, Wettability and Morphology of Engineered Titanium Surfaces on Osteoblast-Like Cell Adhesion, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 365 (2010).

DOI: 10.1016/j.colsurfa.2009.12.017

Google Scholar

[10] A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami and N.M. Davies: Influence of Porosity on Mechanical Properties and in Vivo Response of Ti6al4v Implants, Acta Biomaterialia, vol. 6 (2010) pp.1640-1648.

DOI: 10.1016/j.actbio.2009.11.011

Google Scholar

[11] B.O. Aronsson, J. Lausmaa and B. Kasemo: Glow Discharge Plasma Treatment for Surface Cleaning and Modification of Metallic Biomaterials, Journal of Biomedical Materials Research, vol. 35 (1997) pp.49-73.

DOI: 10.1002/(sici)1097-4636(199704)35:1<49::aid-jbm6>3.0.co;2-m

Google Scholar

[12] X. Liu, P.K. Chu and C. Ding: Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Materials Science and Engineering: R: Reports, vol. 47 (2004) pp.49-121.

DOI: 10.1016/j.mser.2004.11.001

Google Scholar

[13] Z. Amjad: Calcium Phosphates in Biological and Industrial Systems: Kluwer Acad. Publ., (1998).

Google Scholar

[14] Z. Zhong, Y. Yin, B. Gates and Y. Xia: Preparation of Mesoscale Hollow Spheres of Tio2 and Sno2 by Templating against Crystalline Arrays of Polystyrene Beads, Advanced Materials, vol. 12 (2000) pp.206-209.

DOI: 10.1002/(sici)1521-4095(200002)12:3<206::aid-adma206>3.0.co;2-5

Google Scholar

[15] L. Qi and D.P. Birnie III: Templated Titania Films with Meso- and Macroporosities, Materials Letters, vol. 61 (2007) pp.2191-2194.

DOI: 10.1016/j.matlet.2006.08.076

Google Scholar

[16] W. Xia, K. Grandfield, A. Hoess, A. Ballo, Y. Cai and H. Engqvist: Mesoporous Titanium Dioxide Coating for Metallic Implants, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 100B (2012) pp.82-93.

DOI: 10.1002/jbm.b.31925

Google Scholar

[17] B.C. Yang, M. Uchida, H.M. Kim, X.D. Zhang and T. Kokubo: Preparation of Bioactive Titanium Metal Via Anodic Oxidation Treatment, Biomaterials, vol. 25 (2004) pp.1003-1010.

DOI: 10.1016/s0142-9612(03)00626-4

Google Scholar

[18] Y.M. Zhang, P. Bataillon-Linez, P. Huang, Y.M. Zhao, Y. Han, M. Traisnel, K.W. Xu and H.F. Hildebrand: Surface Analyses of Micro-Arc Oxidized and Hydrothermally Treated Titanium and Effect on Osteoblast Behavior, Journal of Biomedical Materials Research Part A, vol. 68A (2004).

DOI: 10.1002/jbm.a.20063

Google Scholar

[19] D. Rats, L. Vandenbulcke, R. Herbin, R. Benoit, R. Erre, V. Serin and J. Sevely: Characterization of Diamond Films Deposited on Titanium and Its Alloys, Thin Solid Films, vol. 270 (1995) pp.177-183.

DOI: 10.1016/0040-6090(95)06913-5

Google Scholar

[20] L. Chandra, M. Chhowalla, G.A.J. Amaratunga and T.W. Clyne: Residual Stresses and Debonding of Diamond Films on Titanium Alloy Substrates, Diamond and Related Materials, vol. 5 (1996) pp.674-681.

DOI: 10.1016/0925-9635(95)00431-9

Google Scholar

[21] S. Krischok, C. Blank, M. Engel, R. Gutt, G. Ecke, J. Schawohl, L. Spieß, F. Schrempel, G. Hildebrand and K. Liefeith: Influence of Ion Implantation on Titanium Surfaces for Medical Applications, Surface Science, vol. 601 (2007) pp.3856-3860.

DOI: 10.1016/j.susc.2007.04.060

Google Scholar

[22] D.A. Puleo and A. Nanci: Understanding and Controlling the Bone–Implant Interface, Biomaterials, vol. 20 (1999) pp.2311-2321.

DOI: 10.1016/s0142-9612(99)00160-x

Google Scholar

[23] L. de Jonge, S. Leeuwenburgh, J. Wolke and J. Jansen: Organic–Inorganic Surface Modifications for Titanium Implant Surfaces, Pharmaceutical Research, vol. 25 (2008) pp.2357-2369.

DOI: 10.1007/s11095-008-9617-0

Google Scholar

[24] A. Liu: The Preparation of Nano-Hydroxyapatite on the Surface of Titanium by Self-Assembled Monolayers, Master, Southwest Jiaotong University, (2005).

Google Scholar

[25] S.H. Lee, H.W. Kim, E.J. Lee, L.H. Li and H.E. Kim: Hydroxyapatite-Tio2 Hybrid Coating on Ti Implants, Journal of Biomaterials Applications, vol. 20 (2006) pp.195-208.

DOI: 10.1177/0885328206050518

Google Scholar

[26] L.M. Zou, C. Yang and Y.Y. Li: Research Progress on Reparing Ti-Based Biomedical Materials by Powder Metallurgy, Materials Review, (2011) pp.82-85.

Google Scholar

[27] C.M. Han, E.J. Lee, H.E. Kim, Y.H. Koh and J.H. Jang: Porous Tio2 Films on Ti Implants for Controlled Release of Tetracycline-Hydrochloride (Tch), Thin Solid Films, vol. 519 (2011) pp.8074-8076.

DOI: 10.1016/j.tsf.2011.06.013

Google Scholar