Hydrogen Accumulation in Technically Pure Titanium Alloy at Saturation from Gas Atmosphere

Article Preview

Abstract:

This paper presents experimental results of study of hydrogen accumulation in technically pure titanium alloy at saturation from gas atmosphere. Automated complex Gas Reaction Controller has been used for hydrogen saturation from gas atmosphere. Temperatures increasing from 350 °C to 500 °C allow increase hydrogen sorption process and as a result significantly increase hydrogen concentration in technically pure titanium alloy. At hydrogen saturation from gas atmosphere at temperature 500 °C increasing of saturation time from 10 minutes to 120 minutes leads to hydrogen concentration increasing from 0.1 wt.% to 1 wt.% and increasing of hydrides volume content throughout the samples. The activation energy for hydrogen evolution has been estimated by thermal desorption spectroscopy method by equal 102 kJ/mol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-73

Citation:

Online since:

January 2014

Export:

Price:

* - Corresponding Author

[1] K. Wang, The use of titanium for medical applications in the USA, Material Science and Engineering: A. 213 (1996) 134-137.

Google Scholar

[2] I. Gurrappa, Characterization of titanium alloy Ti-6Al-4V for chemical and industrial applications, Materials Characterization. 51 (2003) 131-139.

DOI: 10.1016/j.matchar.2003.10.006

Google Scholar

[3] R. W. Schutz, H. B. Watkins, Recent developments in titanium alloy application in the energy industry, Materials Science and Engineering: A. 243, 1-2 (1998) 305-315.

DOI: 10.1016/s0921-5093(97)00819-8

Google Scholar

[4] M. Yamada, An overview on the development of titanium alloys for non-aerospace application in Japan, Material Science and Engineering: A. 213, 1-2 (1996) 8-15.

Google Scholar

[5] W. D. Brewer, R. K. Bird, T. A. Wallace, Titanium alloys and processing for high speed aircraft, Materials Science and Engineering: A. 243, Is. 1-2 (1998) 299-304.

DOI: 10.1016/s0921-5093(97)00818-6

Google Scholar

[6] J-P. Immarigeon, R. T. Holt, A. K. Koul, Lightweight materials for aircraft applications, Materials Characterization. 35, 1 (1995) 41-67.

DOI: 10.1016/1044-5803(95)00066-6

Google Scholar

[7] R.R. Boyer, An overview on the use of titanium in aerospace industry, Materials Science and Engineering: A. 213, 1-2 (1996) 103-114.

Google Scholar

[8] Y. G. Zhou, W. D. Zeng, H. Q. Yu, An investigation of a new near-beta forging process for titanium alloys and its application in aviation components, Materials Science and Engineering: A. 393 (2005) 204-212.

DOI: 10.1016/j.msea.2004.10.016

Google Scholar

[9] J. J. Xu, H. Y. Cheung, S. Q. Shi, Mechanical properties of titanium hydride, Journal of Alloys and Compounds. 436 (2007) 82-85.

DOI: 10.1016/j.jallcom.2006.06.107

Google Scholar

[10] H-J. Christ, A. Senemmar, M. Decker, Effect of hydrogen on mechanical properties of titanium alloys, Sadhana. 28 (2003) 453-465.

DOI: 10.1007/bf02706443

Google Scholar

[11] L. Yan, S. Ramamurthy, J. J. Noel et al., Hydrogen adsorption into alpha titanium in acidic solutions, Electrochimica Acta. 52 (2006) 1169-1181.

DOI: 10.1016/j.electacta.2006.07.017

Google Scholar

[12] V. Madina, I. Azkarate, Compatibility of materials with hydrogen. Particular case: hydrogen embrittlement of titanium alloys, International Journal of Hydrogen Energy. 34 (2009) 5976-5980.

DOI: 10.1016/j.ijhydene.2009.01.058

Google Scholar

[13] C. P. Liang, H. R. Gong, Fundamental influence of hydrogen on various properties of alpha-titanium, International Journal of Hydrogen Energy. 35 (2010) 3812-3816.

DOI: 10.1016/j.ijhydene.2010.01.080

Google Scholar

[14] A. M. Lider, N. S. Pushilina, V. N. Kudiiarov, Investigation of hydrogen distribution from the surface to the depth in technically pure titanium alloy with the help of Glow Discharge Optical Emission Spectroscopy, Applied Mechanics and Materials. 302 (2013).

DOI: 10.4028/www.scientific.net/amm.302.92

Google Scholar

[15] V.N. Kudiiarov, L.V. Gulidova, N.S. Pushilina, A.M. Lider, Application of automated complex Gas Reaction Controller for hydrogen storage materials investigation, Advanced Materials Research. 740 (2013) 690-693.

DOI: 10.4028/www.scientific.net/amr.740.690

Google Scholar

[16] T. Izumi, G. Itoh, Thermal desorption spectroscopy study on the hydrogen trapping states in a pure aluminum, Materials Transactions, 52, 2 (2011) 130-134.

DOI: 10.2320/matertrans.l-m2010825

Google Scholar

[17] E. Tal-Gutelmacher, D. Eliezer, E. Abramov, Thermal desorption spectroscopy (TDS) – Application in quantitative study of hydrogen evolution and trapping in crystalline and non-crystalline materials, Materials Science and Engineering: A. 445-446 (2007).

DOI: 10.1016/j.msea.2006.09.089

Google Scholar

[18] A. Takasaki, Y. Furuya, K. Ojima, Y. Taneda, Hydride dissociation and hydrogen evolution behavior of electrochemically charged pure titanium, Journal of Alloys and Compounds. 224 (1995) 269.

DOI: 10.1016/0925-8388(95)01565-5

Google Scholar