Stress Corrosion Cracking of Duplex Stainless Steels

Article Preview

Abstract:

The relative superiority of duplex stainless steels (DSS) over austenitic grades with regards to stress corrosion cracking (SCC) is discussed. The benefits of N to SCC resistance of DSS are provided. The selective dissolution of phases and its impact on corrosion SCC is reviewed. The hydrogen embrittlement of DSS is reviewed with emphasis on the ferrite participation, the role of environments and fracture morphology. The evolution of secondary phases and precipitates and the resultant change in corrosion resistance and SCC in DSS is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

552-563

Citation:

Online since:

September 2013

Export:

Price:

[1] I. Alvarez-Armas, Duplex Stainless Steels: Brief History and Some Recent Alloys, Recent Patents on Mechanical Engineering, 1 (2008) 51-57.

DOI: 10.2174/2212797610801010051

Google Scholar

[2] F. King, Corrosion resistance of austenitic and duplex stainless steels in environments related to UK geological disposal, a report to NDA RWMD, April (2009).

Google Scholar

[3] G. Hinds, A. Turnbull, Threshold temperature for stress corrosion cracking of duplex stainless steel under evaporative seawater conditions, Corrosion 64 (2008) 101-106.

DOI: 10.5006/1.3280678

Google Scholar

[4] A. Miyasaka, T. Kanamaru, H. Ogawa, Critical Stress for Stress Corrosion Cracking of Duplex Stainless Steel in Sour Environments, Corrosion 52 (1996) 592-599.

DOI: 10.5006/1.3292149

Google Scholar

[5] W-T. Tsai and S-L. Chou, Environmentally assisted cracking behavior of duplex stainless steel in concentrated sodium chloride solution, Corros. Sci. 42 (2000) 1741-1762.

DOI: 10.1016/s0010-938x(00)00029-9

Google Scholar

[6] W-T. Tsai and M-S. Chen, Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated NaCl solution, Corros. Sci. 42 (2000) 545-559.

DOI: 10.1016/s0010-938x(99)00105-5

Google Scholar

[7] M. Femenia, J. Pan, C. Leygraf, P. Luukkonen, In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunnelling microscopy, Corros. Sci. 43 (2001) 1939-(1951).

DOI: 10.1016/s0010-938x(00)00180-3

Google Scholar

[8] C-M Tseng, H-Y Liou, W-T Tsai, Effect of nitrogen content on the environmentally-assisted cracking susceptibility of duplex stainless steels, Metall. Mater. Trans. A, 34A (2003) 95-103.

DOI: 10.1007/s11661-003-0211-0

Google Scholar

[9] A. Laitinen, H. Hänninen, Chloride-Induced Stress Corrosion Cracking of Powder Metallurgy Duplex Stainless Steels, Corrosion, 52 (1996) 295-306.

DOI: 10.5006/1.3293641

Google Scholar

[10] N. Sridhar, J. Kolts, Effects of Nitrogen on the Selective Dissolution of a Duplex Stainless Steel, Corrosion, 43 (1987) 646-651.

DOI: 10.5006/1.3583843

Google Scholar

[11] A. Bhattacharya, P.M. Singh, Effect of heat treatment on corrosion and stress corrosion cracking of SS2205 duplex stainless steel in caustic solution, Metal. Mater. Trans. A, 40A (2009) 1388-1399.

DOI: 10.1007/s11661-009-9833-1

Google Scholar

[12] W-T. Tsai and J-R. Chen, Galvanic corrosion between constituent phases in duplex stainless steel, Corros. Sci. 49 (2007) 3659-3668.

DOI: 10.1016/j.corsci.2007.03.035

Google Scholar

[13] J. W. Fourie, F.P.A. Robinson, Mechanistic aspects of selective corrosion of a 22% duplex stainless steel in acid chloride mixtures, Proc. Inter. Conf. Stainless Steels, ISIJ, June 10-13, 1991, Chiba, Japan : pp.111-117.

Google Scholar

[14] R.A. Perren, T. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Bohni, M.O. Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: investigations by means of a new microchemical method. I. Precipitation-free states, Corros. Sci. 43 (2001).

DOI: 10.1016/s0010-938x(00)00087-1

Google Scholar

[15] P. Kangas, J.M. Nicholls, Chloride-induced stress corrosion cracking of duplex stainless steels: models, test methods and experience, Werkst. Korr. 46 (1995) 354-365.

DOI: 10.1002/maco.19950460603

Google Scholar

[16] F.B. Pickering, Physical metallurgical development of stainless steels, Proc. Conf. Stainless Steel '84, The Institute of Metals, London, 1985, 2-28.

Google Scholar

[17] E. Dabah, V. Lisitsyn, D. Eliezer, Performance of hydrogen trapping and phase transformation in hydrogenated duplex stainless steels, Mater. Sci. Engr. A, 527 (2010) 4851-4857.

DOI: 10.1016/j.msea.2010.04.016

Google Scholar

[18] F. Zucchi, V. Grassi, C. Monticelli, G. Trabanelli, Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions, Corros. Sci. 48 (2006) 522-530.

DOI: 10.1016/j.corsci.2005.01.004

Google Scholar

[19] S. -T. Tsai, K.P. Yen, H.C. Shih, The embrittlement of duplex stainless steel in suifide-containing 3. 5 wt% NaCl solution, Corros. Sci. 40 (1998) 281-295.

DOI: 10.1016/s0010-938x(97)00135-2

Google Scholar

[20] A.A. El-Yazgi, D. Hardie, Stress corrosion cracking of duplex and super duplex stainless steels in sour environments, Corros. Sci. 40 (1998) 909-930.

DOI: 10.1016/s0010-938x(98)00022-5

Google Scholar

[21] F.D. de Moraes, F. L. Bastian, J.A. Ponciano, Influence of dynamic straining on hydrogen embrittlement of UNS_G41300 and UNS-S31803 steels in a low H2S concentration environment, Corros. Sci. 47 (2005) 1325-1335.

DOI: 10.1016/j.corsci.2004.07.033

Google Scholar

[22] Z.Y. Liu, C.F. Dong, X.G. Li, Q. Zhi, Y.F. Cheng, Stress corrosion cracking of 2205 duplex stainless steel in H2S-CO2 environment, J. Mater. Sci. 44 (2009) 4228-4234.

DOI: 10.1007/s10853-009-3520-x

Google Scholar

[23] W.C. Luu, P.W. Liu, J.K. Wu, Hydrogen Transport and Degradation of a Commercial Duplex Stainless Steel, Corros. Sci. 44 (2002) 1783-1791.

DOI: 10.1016/s0010-938x(01)00143-3

Google Scholar

[24] K. Owczarek and T. Zacroczymski, Hydrogen Transport in a Duplex Stainless Steel, Acta Mater. 48 (2000) 3059.

Google Scholar

[25] S. Roychowdhury and Vivekanand Kain, Embrittlement of a Duplex Stainless Steel in Acidic Environment Under Applied Cathodic Potentials, J. Mater. Engr. Perf. 17 (2008) 702-707.

DOI: 10.1007/s11665-008-9199-3

Google Scholar

[26] W. Zheng and D. Hardie, The effect of hydrogen on the fracture of a commercial duplex stainless steel, Corros. Sci. 47 (1991) 23-36.

Google Scholar

[27] J. -O. Nilsson, Overview: Super duplex stainless steels, Mater. Sci. Tech. 8 (1992) 685-700.

Google Scholar

[28] R.A. Perren, T. Suter, C. Solenthaler, G. Gullo, P.J. Uggowitzer, H. Bohni, M.O. Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: investigations by means of a new microchemical method. II. Influence of Precipitates, Corros. Sci. 43 (2001).

DOI: 10.1016/s0010-938x(00)00088-3

Google Scholar

[29] N. Lopez, M. Cid, M. Puiggali, Influence of s-phase on mechanical properties and corrosion resistance of duplex stainless steels, Corros. Sci. 41 (1999) 1615-1631.

DOI: 10.1016/s0010-938x(99)00009-8

Google Scholar

[30] K. M. Adhe, V. Kain, K. Madangopal, H. S. Gadiyar, Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel, J. Mater. Engr. Perf. 5 (1996) 500-506.

DOI: 10.1007/bf02648847

Google Scholar

[31] G. Reidrich, F. Loib, Embrittlement of high chromium steels within temperature range of 570 - 1100 ⁰F, Archiv für das Eisenhüttenwesen 15 (1941) 175–182.

Google Scholar

[32] R.M. Fisher, E.J. Dulis, K.G. Carrol, Identification of the precipitate accompanying 885°F embrittlement in chromium steels, Transactions AIME 197 (1953) 690–695.

Google Scholar

[33] R.O. Williams, Further Studies of the Iron- Chromium System, Trans. TMS-AIME 212 (1958) 497–502.

Google Scholar

[34] A. Mateo, A. Redjaïmia, L. Llanes, G. Metauer, M. Anglada, Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel, J. Mater. Sci. 32 (1997) 4533-4540.

DOI: 10.1023/a:1018669217124

Google Scholar

[35] F. Danoix, P. Auger, Atom Probe Studies of the Fe-Cr System and Stainless Steels Aged at Intermediate Temperature - A ReviewMater. Charact. 44 (2000) 177-201.

DOI: 10.1016/s1044-5803(99)00048-0

Google Scholar

[36] F. Iacoviello, F. Casari, S. Gialanella, Effect of 475 ⁰C embrittlement, on duplex stainless steels localized corrosion resistance, Corros. Sci. 47 (2005) 909-922.

DOI: 10.1016/j.corsci.2004.06.012

Google Scholar