Nano Mechanical Behaviors of Hindleg Cuticle in Beetle Dorcus titanus (Coleoptera: Lucanidae)

Article Preview

Abstract:

Biomaterials have a hierarchical structure with outstanding mechanical properties that are far beyond those additional engineering materials. Nano indentation techniques are convenient to study the biological materials. In this paper, the nano mechanical behavors of hindleg cuticle in beetle Dorcus titanus were investigated. The results indicate that the hardness and modulus values of hindleg cuticle outside are far higher than that of inside as well as the front podomere cuticle outside has a softer stiffness than that of the middle podomere cuticle outside, which is exactly contrary to the cuticle inside anyway. The primary formation factor probably is related to the different epicuticle and exocuticle with different thickness. Mechanics theories on the stiffness, hardness, strength and toughness of biomaterials can be expected to play a key role in developing bio-inspired multi-functional and hierarchical materials in future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

529-533

Citation:

Online since:

March 2013

Export:

Price:

[1] S. Kamat, X. Su, R. Ballarini, A.H. Heuer: Nature Vol. 405 (2000), p.1036.

Google Scholar

[2] T.L. Norman, Z. Wang: Bone Vol. 20 (1997), p.375.

Google Scholar

[3] A.P. Jackson, J.F.V. Vincent, R.M. Turner: Proc. R. Soc. London. A Vol. 234 (1988), p.415.

Google Scholar

[4] I. Jager, P. Fratzl: Biophys. J. Vol. 79 (2000), p.1737.

Google Scholar

[5] R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio: Acta mater. Vol. 48 (2000), p.2383.

Google Scholar

[6] T.L. Norman, D. Vashishth, D.B. Burr: J. Biomech. Vol. 28 (1995), p.309.

Google Scholar

[7] Z.X. Yang, Z.D. Dai: Acta Materiae Compositae Sinica Vol. 25 (2008), p.1.

Google Scholar

[8] B. Ji, H. Gao: Journal of the Mechanics and Physics of Solids Vol. 52 (2004), p. (1963).

Google Scholar

[9] Z.D. Dai, S.N. Gorb, U. Schwarz: J Exp. Biol. Vol. 205 (2002), p.2479.

Google Scholar

[10] Z.D. Dai, S.N. Gorb: Journal of Shanghai Jiao Tong University Vol. 37 (2003), p.66.

Google Scholar

[11] B.L. Zhou, H.B. Feng, F.T. Zhang, et al: Progress in natural science Vol. 4 (1994), p.713.

Google Scholar

[12] J.F.V. Vincent: Composites A: Applied Science and Manufacturing Vol. 33 (2002), p.1311.

Google Scholar

[13] H.R. Hepburn and H.D. Chandler: J. comp. Physiol. Vol. 109 (1976), p.177.

Google Scholar

[14] R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio: Mater. Sci. Eng. A Vol. 297 (2001), p.203.

Google Scholar

[15] J.D. Currey: Proc. R. Soc. London. B Vol. 196 (1977), p.443.

Google Scholar

[16] S. Weiner, H.D. Wagner: Ann. Rev. Mater. Res. Vol. 28 (1998), p.271.

Google Scholar

[17] W.J. Landis: Bone Vol. 16 (1995), p.533.

Google Scholar

[18] H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl: Proc. Natl. Acad. Sci. Vol. 100 (2003), p.5597.

Google Scholar

[19] H. Gao, B. Ji, M.J. Buehler, H. Yao: Chem. Biosystems Vol. 1 (2004), p.37.

Google Scholar

[20] W.C. Oliver, G.M. Pharr: J. Mater. Res. Vol. 19 (2004), p.3.

Google Scholar

[21] F. Haque: Surf. Eng. Vol. 19 (2003), p.255.

Google Scholar

[22] M. Sarikaya, H. Fong, J. Sopp, K. Katti, G. Mayer, in: 15th ASCE: Eng. Mech. Conf., New York, NY June (2002).

Google Scholar

[23] G.M. Pharr and A. Bolshakov: Journal of Materials Research Vol. 17 (2002), p.2660.

Google Scholar

[24] I.N. Sneddon: Int. J. Engng. Sci. Vol. 3 (1965), p.47.

Google Scholar

[25] W.C. Oliver and G.M. Pharr: J. Mater. Res. Vol. 7 (1992), p.1564.

Google Scholar

[26] N. Barbakadze, S. Enders, S.N. Gorb and E. Arzt: J Exp. Biol. Vol. 209 (2006), p.722.

Google Scholar

[27] B. Bhushan and X. Li: Int. Mater. Rev. Vol. 48(2003), p.125.

Google Scholar

[28] Z.X. Yang, W.Y. Wang, Q.Q. Yu, et al: Acta Materiae Compositae Sinica Vol. 24 (2007), p.92.

Google Scholar

[29] Z.X. Yang, Z.D. Dai, C. Guo: Chinese Science Bulletin Vol. 55(2010), p.771.

Google Scholar