Synthesis and Characterization of Bone Cement (Hydroxyapatite Base) Calcinated at 900°C and Loading the Silver Nanoparticles on it

Article Preview

Abstract:

The bioceramics, calcium hydroxyapatite (HA), is a material which is biocompatible to the human body and is well suited to be used in hyperthermia applications for the treatment of bone cancer. We synthesis hydroxyapatite in modified synthetic body fluid (SBF) solutions at 37°C and pH of 7.4 using a novel chemical precipitation technique. Then after heat operation, on filtered precipitated result HA were produced. For loading the silver nanoparticles (Ag NPs) on the hydroxyapatite we use AgNO3 solution. And for reducing Ag+ ions apply sodium borohydrate solution. The formations of the silver nanoparticles on the HAP structure were confirmed by X-ray diffraction, transmission electron microscopy (TEM). TEM image show the nanostructure of silver particles, being formed on hydroxyapatite texture.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

893-896

Citation:

Online since:

December 2012

Export:

Price:

[1] W. Weng, G. Shen and G. Han, Mat. Sci. Lett., Vol. 19, (2000), p.2187.

Google Scholar

[2] K. Cheng, W. Weng, G. Han, P. Du, G. Shen, J. Yang and J.M.F. Ferreira, J. Mat. Chem. And Phys., Vol. 78, (2003), p.767.

Google Scholar

[3] R.E. Riman, W.L. Suchanek, K. Byraopa, C.W. Chen, P. Shuk and C.S. Oakes, Solid State Ionics, Vol. 151, (2002), p.393.

Google Scholar

[4] L-Y. Huang, K.W. Xu, J. Lu, J. Mat. Sci. Mat. In Med., Vol. 11, (2000) p.667.

Google Scholar

[5] W. Weng, S. Zhang, K. Cheng, H. Qu, P. Du, G. Shen, J. Yuan and G. Han, Sur. and Coat. Tech., Vol. 167, (2003), p.292.

Google Scholar

[6] W. Weng, G. Han, P. Du and G. Shen, Mat. Chem. and Phys., Vol. 74, (2002), p.92.

Google Scholar

[7] D. Choi, K. Marra and P.N. Kumta, 2004, Mat. Res. Bull., Vol. 39, (2004), . p.417.

Google Scholar

[8] W. Weng and J.L. Baptista, 1998, Biomat., Vol. 19, (1998), p.125.

Google Scholar

[9] K. Cheng, W. Weng, G. Han, P. Du, G. Shen, J. Yang and J.M.F. Ferreira, 2003, Mat. Res. Bull., Vol. 38, (2003), p.89.

Google Scholar

[10] K. Cheng, G. Shen, W. Weng, G. Han, J.M.F. Ferreira, J. Yang, Mat. Lett., Vol. 51, (2001), p.37.

Google Scholar

[11] W. Weng, G. Han, P. Du, G. Shen and J. Yang, Mat. Chem. and Phys., Vol. 77, (2002), p.578.

Google Scholar

[12] V. Shiny, P. Ramesh, M.C. Sunny and H.K. Varma, Mat. Lett., Vol. 46, (2000), p.142.

Google Scholar

[13] T. Kokubo, H.M. Kim and M. Kawashita, Biomat., Vol. 24, (2003), p.2161.

Google Scholar

[14] L.J. Jha, S.M. Best, J.C. Knoles, I. Rehman, J.D. Santos, W. Bonfield and J. Mat. Sci. Mat. In Med., Vol. 8, (1997), p.185.

Google Scholar

[15] Y.C. Tsui, C. Doyle and T.W. Clyne, Biomat., Vol. 19, (1998), p. (2015).

Google Scholar

[16] D.M. Liu, T. Troczynski and J.T. Wenjea, Biomat., Vol. 22, (2001), p.1721.

Google Scholar

[17] D. B. Haddow, P. F. Vanes and R. Van Noort, J. Sol-Gel Science and Technology, Vol. 13, (1998), p.261.

Google Scholar

[18] E. Saiz, M. Goldmana, J.M. Gomez-Vegaa, A.P. Tomsia, G.W. Marshall and S.J. Marshall, Biomat., Vol. 23, (2002), p.3749.

Google Scholar

[19] W. Paul, C.P. Sharma, Am. J. Biochem Biotechnol Vol. 2, (2006), p.41.

Google Scholar

[20] M. Monzel, Biotechnology (Mainz, Germany) Vol. 17, (2006), p.34.

Google Scholar

[21] T. M. Tolaymat, A. M. El Badawy, A. Genaidy, K. G. Scheckel, T.P. Luxton, M. Suidan, Sci. Total Environ. Vol. 408, (2010), p.999.

DOI: 10.1016/j.scitotenv.2009.11.003

Google Scholar

[22] M.Z. Kassaee, A. Akhavan, N. Sheikh and R. Beteshobabrud, Radiation Physics and Chemistry Vol. 77, (2008), p.1074.

DOI: 10.1016/j.radphyschem.2008.06.010

Google Scholar

[23] Kokubo T,. J Non-Cryst Solids: Vol . 120, (1990), p.138.

Google Scholar

[24] Li P, Nakanishi K, Kokubo T, de Groot K., Biomaterials: Vol. 14, (1993), P. 963.

Google Scholar

[25] B.D. Cullity, Elements of X- Ray Diffraction, Edison-Wesley Publishing Company, Inc., (1978).

Google Scholar