Enhancement of through Silicon via Sidewall Quality by Nanosecond Laser Pulses with Chemical Etching Process

Article Preview

Abstract:

Through-silicon via (TSV) is an emerging technology for three-dimensional integrated circuit, system in package, and wafer level packaging applications. In this study, a wet chemical etching (WCE) process has been employed to enhance the sidewall quality of TSVs fabricated using nanosecond (ns) laser pulses. Experimental results show that the TSV sidewall roughness can be markedly reduced, from micrometer scale to nanometer scale. We concluded that the proposed method would enable semiconductor manufactures to use ns laser drilling for industrial TSV fabrication as the desired TSV sidewall quality can be achieved by incorporating the WCE process, which is suitable for mass production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

October 2012

Export:

Price:

[1] L. C. Shen, C. W. Chien, H. C. Cheng, C. T. Lin, Development of three-dimensional chip stacking technology using a clamped through-silicon via interconnection, Microelectronics Reliability, 50 (2010) 489–497.

DOI: 10.1016/j.microrel.2009.10.012

Google Scholar

[2] K. Navas, S. R. Vempati, L. Samuel, S. W. Ho, L. Vincent, Z. Xiaowu , E. B. Liao, N. Ranganathan, Development of 3-D Silicon Module With TSV for System in Packaging, IEEE Transactions on Components and Packaging Technology, 33 (2010) 3–8.

DOI: 10.1109/tcapt.2009.2037608

Google Scholar

[3] J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, C. S. Patel, R. J. Polastre, K. Sakuma, E. S. Sprogis, C. K. Tsang, B, C, Webb, and S. L. Wright, 3D Silicon Integration, Electronic Components and Technology Conference, (2008) 538–543.

DOI: 10.1109/ectc.2008.4550025

Google Scholar

[4] K. Kazuo, Y. Toshihiro, M. Daisuke, O. Toshikazu, T. Yuichi, T. Kenji, P. B. Dale High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking, Journal of the Electrochemical Society, 152 (2005) 173–177.

Google Scholar

[5] Y. C. Hsin, C. C. Chen, J. H. Lau, P. J. Tzeng, S. H. Shen,Y. F. Hsu, S. C. Chen, C. Y. Wn, J. C. Chen, T. K. Ku, M. J. Kao, Effects of Etch Rate on Scallop of Through-Silicon Vias (TSVs) in 200mm and 300mm Wafers, Electronic Components and Technology Conference, (2011).

DOI: 10.1109/ectc.2011.5898652

Google Scholar

[6] H. V. Jansen, M. J. Boer, S. Unnikrishnan, M. C. Louwerse, M. C. Elwenspoek, Black silicon method: X. A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment, Journal of Micromechanics and Microengineering, 19 2009 1–41.

DOI: 10.1088/0960-1317/19/3/033001

Google Scholar

[7] B. Wu, A. Kumar, S. Pamarthy, High aspect ratio silicon etch: A review, Journal of Applied Physics, 108 (2010) 1–20.

DOI: 10.1063/1.3474652

Google Scholar

[8] X. Wang, W. Zeng, O. L. Russo, E. Eisenbraun, High aspect ratio Bosch etching of sub-0. 25μ trenches for hyper integration applications, Journal of Vacuum Science Technology B, 25 (2007) 1376–1381.

DOI: 10.1116/1.2756554

Google Scholar

[9] M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park and J. W. Baldwin, Cryogenic etch process development for profile control of high aspect-ratio submicron silicon trenches, Journal of Vacuum Science Technology B, 25 (2007) 21–28.

DOI: 10.1116/1.2402151

Google Scholar

[10] L. A. Donohue, Developments in Si and SiO2 Etching for MEMS based optical applications, Proceedings of SPIE, 5347 (2004) 44–53.

Google Scholar

[11] M. Steinert, J. Acker, M. Krause, S. Oswald, K. Wetzig, Reactive Species Generated during Wet Chemical Etching of Silicon in HF/HNO3 Mixtures, Journal of Physics Chemistry B 110 (2006) 11377–11382.

DOI: 10.1021/jp0608168

Google Scholar

[12] M. Steinert, J. Acker, z A. Henßge, and K. Wetzig, Experimental Studies on the Mechanism of Wet Chemical Etching of Silicon in HF/HNO3 Mixtures, Journal of the Electrochemical Society, 152 (2005) 843–850.

DOI: 10.1149/1.2116727

Google Scholar

[13] H. Robbins, B. Schwartz, Chemical Etching of Silicon I. The System HF, HNO, and H2O, Journal of the Electrochemical Society, 105 (1959) 505–508.

Google Scholar

[14] H. Robbins, B. Schwartz, Chemical Etching of Silicon II. The System HF, HNO, and H2O, Journal of the Electrochemical Society, 107 (1960) 108–111.

Google Scholar

[15] B. Schwartz, H. Robbins, Chemical Etching of Silicon III. A Temperature Study in the Acid System, Journal of the Electrochemical Society, 108 (1961) 365–372.

Google Scholar