Toughening Mechanisms and Wear Behavior of a TiC Whisker Toughening Alumina Ceramic Cutting Tool Composite

Article Preview

Abstract:

Toughening mechanisms and flank wear behavior of a TiC whisker toughening Al2O3-based ceramic cutting tool composite were investigated. The results showed that the wear behavior of the tool composite was greatly influenced by the whisker toughening mechanisms, of which the toughening effects on the composite can increase with increasing cutting temperature. As a result, the tool composite could still possess enough high fracture toughness and flexure strength at high cutting temperature, which resulted in an interesting phenomenon that the wear resistance of the tool composite at higher cutting speed was higher than that of itself at lower cutting speed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

634-639

Citation:

Online since:

April 2012

Export:

Price:

[1] C.H. Xu: J. Eur. Ceram. Soc. Vol. 25 (2005), p.605.

Google Scholar

[2] A.S. Kumar, A.R. Durai and T. Sornakumar: Int. J. Refract. Met. H. Vol. 22 (2004), p.17.

Google Scholar

[3] S. Lo Casto, E. Lo Valvo, E. Lucchini, S. Maschio, M. Piacentini and V.F. Ruisi: Wear. Vol. 225-229 (1999), p.227.

DOI: 10.1016/s0043-1648(98)00360-3

Google Scholar

[4] M.K. Young, T.K. Won and W.K. Young: Ceram. Int. Vol. 30 (2004), p. (2081).

Google Scholar

[5] J. Vleugels and O. Van Der Biest: Wear. Vol. 225-229 (1999), p.285.

Google Scholar

[6] P.F. Becher: J. Am. Ceram. Soc. Vol. 74 (1991), p.255.

Google Scholar

[7] F. F. Lange: J. Mater. Sci. Vol. 17 (1982), p.255.

Google Scholar

[8] V. Tikare and A.H. Heuer: J. Am. Ceram. Soc. Vol. 74 (1991), p.593.

Google Scholar

[9] T.L. EL-Wardany, E. Mohammed and M.A. Elbestawi: Inter. J. Mach. Tool. Manu. Vol. 36 (1996), p.611.

Google Scholar

[10] C.Z. Huang and X. Ai: Mater. Res. Bull. Vol. 31 (1996), p.951.

Google Scholar

[11] J. Zhao, J.X. Deng, J.H. Zhang and X. Ai: Wear. Vol. 208 (1997), p.220.

Google Scholar

[12] J.X. Deng, L.L. Liu, J.H. Liu, J.L. Zhao and X.F. Yang: Inter. J. Mach. Tool. Manu. Vol. 45 (2005), p.1393.

Google Scholar

[13] D. Jianxin and A. Xing: Tribol. Int. Vol. 30 (1988), p.807.

Google Scholar

[14] S. Novak, M. Kalin and T. Kosmac: Wear. Vol. 250 (2001), p.318.

Google Scholar

[15] S. Lo Casto, E. Lo Valvo, E. Lucchini, S. Maschio, M. Piacentini and V. F. Ruisi: Wear. Vol. 225-229 (1999), p.227.

DOI: 10.1016/s0043-1648(98)00360-3

Google Scholar

[16] B.Q. Liu, C.Z. Huang, X.Y. Lu, M. L, Gu and H. L, Liu: Ceram. Inter. Vol. 33 (2007), p.1475.

Google Scholar

[17] B.Q. Liu, C.Z. Huang, M.L. Gu, H.T. Zhu and H.L. Liu: Mater. Sci. Eng. A. Vol. 460-461 (2007), p.146.

Google Scholar

[18] B.Q. Liu, C.Z. Huang, H.L. Liu and X.W. Chong: Key Engineering Materials, Vol. 431-432 (2010), p.201.

Google Scholar

[19] C.H. Xu, X. Ai and C.Z. Huang: Wear. Vol. 249 (2001), p.503.

Google Scholar

[20] Z.Q. Liu and X. Ai: Tool Engineering. Vol 35 (2001), p.3 (In Chinese).

Google Scholar

[21] A. Senthilkumar, A. Raja Durai and T. Sornakumar: Int. J. Refract. Met. H. Vol. 21 (2003), p.109.

Google Scholar

[22] D.R. Clarke and K.T. Faber: J. Phys. Chem. Solids. Vol. 48 (1987), p.1115.

Google Scholar