Fabrication of Nanofibers by Low-Voltage Near-Field Electrospinning

Article Preview

Abstract:

In this paper, non-woven micro-/nanofibers and wavelike micro-ribbons were produced by a low-voltage near-field electrospinning with working voltage less than 2.8 kV and spinning distance less than 8 mm. A series of experiments were carried out to explore the influence of processing variables on the formation of near-field electrospun nanofibers (polyvinyl pyrrolidone (PVP) as an example), including concentration, humidity and spinning distance. The formation mechanism of helical fibers and wavelike micro-ribbons was also discussed, which can be ascribed to electrical driven bending instability and/or mechanical jet buckling when hitting the collector surface. The results indicate that the morphology of the electrospun fibers can be controlled by experimental variables. And the low-voltage near-field electrospinning is a promising technique which may be used in precision deposition of nanofibers for nanodevices, direct-write nanofabrication, etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-64

Citation:

Online since:

March 2012

Export:

Price:

[1] Y.Z. Long, M.M. Li, C.Z. Gu, M.X. Wan, J.L. Duvail, Z.W. Liu and Z.Y. Fan: Progress in Polymer Science Vol. 36 (2011), p.1415.

Google Scholar

[2] Z.M. Huang, Y.Z. Zhang, M. Kotaki and S. Ramakrishna: Composites Science and Technology Vol. 63 (2003), p.2223.

Google Scholar

[3] M.M. Li, Y.Z. Long, H.X. Yin and Z.M. Zhang: Chinese Physics B Vol. 20 (2011), p.48101.

Google Scholar

[4] M.M. Li, Y.Z. Long, D.Y. Yang, J.S. Sun, H.X. Yin, Z.L. Zhao, W.H. Kong, X.Y. Jiang and Z.Y. Fan: Journal of Materials Chemistry Vol. 21 (2011), p.13159.

Google Scholar

[5] J.S. Tan, Y.Z. Long and M.M. Li: Chinese Physics Letters Vol. 25 (2008), p.3067.

Google Scholar

[6] J. Kameoka, R. Orth, Y.N. Yang, D. Czaplewski, R. Mathers, G.W. Coates and H.G. Craighead: Nanotechnology Vol. 14 (2003), p.1124.

DOI: 10.1088/0957-4484/14/10/310

Google Scholar

[7] D.H. Sun, C. Chang, S. Li and L.W. Lin: Nano Letters Vol. 6 (2006), p.839.

Google Scholar

[8] Y.Q. Wu, M.S. Johannes and R.L. Clark: Materials Letters Vol. 62 (2008), p.699.

Google Scholar

[9] C. Hellmann, J. Belardi, R. Dersch, A. Greiner, J.H. Wendorff and S. Bahnmueller: Polymer Vol. 50 (2009), p.1197.

DOI: 10.1016/j.polymer.2009.01.029

Google Scholar

[10] G.F. Zheng, W.W. Li, X. Wang, D.Z. Wu, D.H. Sun and L.W. Lin: Journal of Physics D: Applied Physics Vol. 43 (2010), p.415501.

Google Scholar

[11] C. Chang, V.H. Tran, J.B. Wang, Y.K. Fuh and L.W. Lin: Nano Letters Vol. 10 (2010), p.726.

Google Scholar

[12] C. Chang, K. Limkrailassiri and L.W. Lin: Applied Physics Letters Vol. 93 (2008), p.123111.

Google Scholar

[13] D.H. Reneker, A.L. Yarin, H. Fong and S. Koombhongse: J. Appl. Phys. Vol. 87 (2000), p.4531.

Google Scholar

[14] R. Kessick and G. Tepper: Applied Physics Letters Vol. 84 (2004), p.4807.

Google Scholar

[15] T. Han, D.H. Reneker and A.L. Yarin: Polymer Vol. 48 (2007), p.6064.

Google Scholar

[16] C.C. Tang, J.C. Chen, Y.Z. Long, H.X. Yin, B. Sun and H.D. Zhang: Chin. Phys. Lett. Vol. 28 (2011), p.056801.

Google Scholar

[17] D.H. Reneker and A.L. Yarin: Polymer Vol. 49 (2008), pp.2387-2425.

Google Scholar