Copper Distribution in Shaxi River Sediments

Article Preview

Abstract:

For the surficial sediments sampled from the Shaxi River in Sanming, Fujian Province, China, the distribution characteristic of heavy metal copper in surficial sediments were investigated. The microwave digestion result showed that the concentration of Cu in surficial sediments ranged from 26.95 mg/kg to 74.76 mg/kg. The results of modified BCR sequential extraction procedure showed that heavy metal copper in the surficial sediment was mainly associated with residual and reducible fractions. The fractions of copper sampled near the wastewater discharge were in the order of residual > reducible > oxidizable > acid soluble > water soluble fraction, and in the order of residual > reducible > acid soluble > oxidizable > water soluble fraction in samples away from the wastewater discharge. The results indicated that the concentration and fraction of pollutant copper were significantly correlative to the wastewater discharge of some iron and steel factory around the Shaxi River, which varied obviously with the downstream distance increasing to the wastewater discharge. The reducible and oxidizable fractions decreased with the downstream distance increasing to the wastewater discharge of iron and steel factory, however, the acid soluble fraction increased with the distance increasing.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

1440-1444

Citation:

Online since:

October 2011

Export:

Price:

[1] Y. M. Nelson, W. Lo, L. W. Lion, M. L. Shuler and W. C. Ghiorse: Environ. Sci. Technol. Vol. 29-8 (1995), p. (1934)

Google Scholar

[2] J. V. Headley, J. Gandrass and J. Kuballa: Environ. Sci. Technol. Vol. 32-24 (1998), p.3968

Google Scholar

[3] D. M. Dong, Y. M. Nelson, L. W. Lion, M. L. Shuler and W. C. Ghiorse: Water Res. Vol. 34-2 (2000), p.427

Google Scholar

[4] A. H. M. Veeken and H. V. Hamelers: Water Sci. and Technol. Vol. 40-1 (1999), p.129

Google Scholar

[5] Y. Shiro and T. Tahei: Environ. Sci. Technol. Vol. 34-8 (2000), p.1572

Google Scholar

[6] V. Philippe, H. Frederik, V. Willy, F. Tom and S. Diederik: J. Environ. Eng. Vol. 127-9 (2001), p.802

Google Scholar

[7] L. H. Zhang, Z. L. Zhu, H. Zhang, Y. L. Qiu and J. F. Zhao: Chinese Journal of Apply Chemistry. Vol. 25-7 (2008), p.773

Google Scholar

[8] Z. L. Zhu, L. H. Zhang, H. Zhang, Y. L. Qiu, R. H. Zhang and J. F. Zhao: Pedosphere. Vol. 19-2 (2009), p.137

Google Scholar

[9] L. H. Zhang, Z. L. Zhu, C. S. Zheng, H. Zhang, Y. L. Qiu and J. F. Zhao: Journal of Environmental Sciences. Vol. 20-8 (2008), p.970

Google Scholar

[10] S. H. Guo, X. L. Wang, Y. Li, J. J. Hen and J. C. Yang: J. Enuiron. Sci. Vol. 18-6 (2006), p.1193

Google Scholar

[11] T. Susan, B. Karin, M. Roland, R. Jens, H. Lukas, S. Rainer and N. Bernd: Environ. Sci. Technol. Vol. 38-3 (2004), p.937

Google Scholar

[12] M. Pueyo and G. Ruret: Anal. Chim. Acta. Vol. 504 (2004), p.217

Google Scholar

[13] R. Pardo, E. Barrado and L. Perez: Water Res. Vol. 24-3 (1990), p.337

Google Scholar

[14] P. H. Quevauviller, G. Rauret, J. F. Lopez-Sanchez, R. Rubio, A. Ure and H. Muntau: Sci. Total. Environ. Vol. 205 (1997), p.223

Google Scholar

[15] C. M. Davidson, A. L. Duncan, D. Littlejohn, A. M. Ure and L. M. Garden: Anal. Chim. Acta. Vol. 363 (1998), p.45

Google Scholar

[16] X. Z. Zhang: Hydrology. Vol. 20-6 (2000), p.55

Google Scholar

[17] T. J. Xu: Water Resour. Protection. Vol. 21-3 (2005), p.54

Google Scholar

[18] A. Tessier, P. G. C. Campbell and M. Bisson: Anal. Chem. Vol. 51-7 (1979), p.844

Google Scholar