Biocement: Green Building- and Energy-Saving Material

Article Preview

Abstract:

Cement and chemical grouts have often been used for soil strengthening. However, high cost, energy consumption, and harm to environment restrict their applications. Biocement could be a new green building- material and energy-saving material. Biocement is a mixture of enzymes or microbial biomass with inorganic chemicals, which can be produced from cheap raw materials. Supply of biocementing solution to the porous soil or mixing of dry biocement with clayey soil initiate biocementation of soil due to specific enzymatic activity. Different microorganisms and enzymes can be used for production of biocement.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

4051-4054

Citation:

Online since:

October 2011

Export:

Price:

[1] J.T. DeJong, M.B. Fritzges, and K. Nusslein "Microbially induced cementation to control sand response to undrained shear." J. Geotech. Geoenviron. Eng., 2006. 132(11), 1381-1392.

DOI: 10.1061/(asce)1090-0241(2006)132:11(1381)

Google Scholar

[2] J.T. DeJong, Mortensen, B.M., Martinez, B.C. and Nelson, D.C. "Bio-mediated soil improvement". Ecol. Eng., 2010, 36(2): 197-210.

DOI: 10.1016/j.ecoleng.2008.12.029

Google Scholar

[3] W. De Muynck, Verbeken, K., De Belie, N., Verstraete, W. "Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone." Ecol. Eng., 2010, 36(2),99-111.

DOI: 10.1016/j.ecoleng.2009.03.025

Google Scholar

[4] W. De Muynck De Belie N, Verstraete W. 2010. Microbial carbonate precipitation in construction materials: a review. Ecol Eng., 2010, 36:118–136.

DOI: 10.1016/j.ecoleng.2009.02.006

Google Scholar

[5] S.U. Gerbersdorf, Jancke, T., Westrich, B., Paterson, D.M. "Microbial stabilization of riverine sediments by extracellular polymeric substances". Geobiology, 2008, 6:57-69.

DOI: 10.1111/j.1472-4669.2007.00120.x

Google Scholar

[6] U. Gollapudi, C. Knutson, S. S. Bang, and M. Islam. "A new method for controlling leaching through permeable channels". Chemosphere, 1995, 30:695–705.

DOI: 10.1016/0045-6535(94)00435-w

Google Scholar

[7] M.T. Gonzalez-Munoz, M.T., Rodriguez-Navarro, C., Martinez-Ruiz, F., Arias, H.M., Merroun, M.L. and Rodriguez-Gallego, M. "Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation". Geological Society, London, Special Publications, 2010, 336: 31-50.

DOI: 10.1144/sp336.3

Google Scholar

[8] M.P. Harkes, van Paassen L.A., Booster J.L., Whiffin V.S., van Loosdrecht M.C.M. "Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement". Ecol Eng., 2010, 36:112–117.

DOI: 10.1016/j.ecoleng.2009.01.004

Google Scholar

[9] V. Ivanov, Stabnikov, V., Zhuang, W.-Q. , Tay, S.T.- L., and Tay J.- H. "Phosphate removal from return liquor of municipal wastewater treatment plant using iron-reducing bacteria". Journal of Applied Microbiology, 2005, 98: 1152-1161.

DOI: 10.1111/j.1365-2672.2005.02567.x

Google Scholar

[10] V. Ivanov, V. and Chu, J. (2008). "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ". Reviews in Environ. Sci. Biotechnol., 7: 139-153.

DOI: 10.1007/s11157-007-9126-3

Google Scholar

[11] V. Ivanov, V., Kuang, S.-L., Guo, C.-H. and Stabnikov, V. "The removal of phosphorus from reject water in a municipal wastewater treatment plant using iron ore". J. Chem. Technol. Biotechnol., 2009, 84: 78-82.

DOI: 10.1002/jctb.2009

Google Scholar

[12] Ivanov V. Environmental Microbiology for Engineers. CRC Press, Taylor &Frensis Group, Boca Raton, 2010. 438 p.

Google Scholar

[13] J.K. Mitchell, and Santamarina, J.C. "Biological considerations in geotechnical engineering". J. Geotech. Geoenvir. Eng., 2005, 131: 1222-1233.

DOI: 10.1061/(asce)1090-0241(2005)131:10(1222)

Google Scholar

[14] S.K. Ramachandran, V. Ramakrishnan, and S. S. Bang. "Remediation of concrete using microorganisms". ACI Materials J., 2001, 98: 3–9.

Google Scholar

[15] L.A. van Paassen, Ghose R, van der Linden TJM, van der Star WRL, van Loosdrecht MCM. 2010. "Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment". J Geotech Geoenviron Eng, 2010, 1721-1728.

DOI: 10.1061/(asce)gt.1943-5606.0000382

Google Scholar

[16] L.A. van Paassen, Daza, C.D, Staal, M, Sorokin, D.Y, van der Zon, W., and van Loosdrecht, M.C.M. "Potential soil reinforement by biological denitrification." Ecol. Eng., 2010, 36(2), 168-175.

DOI: 10.1016/j.ecoleng.2009.03.026

Google Scholar

[17] S.K. Ramachandran, Ramkrishnan V, Bang SS. "Remediation of concrete using microorganisms". ACI Mater J , 2001, 98:3–9.

Google Scholar

[18] K.V. Tittelboom, De Belie N, De Muynck W, Verstraete W. "Use of bacteria to repair cracks in concrete." Cement Concrete Res, 2010, 40:157-166.

DOI: 10.1016/j.cemconres.2009.08.025

Google Scholar

[19] V.S. Whiffin, V.S., Van Paassen, L.A., and Harkes, M.P., "Microbial carbonate precipitation as a soil improvement technique". Geomicrobiol. J., 2007, 24 (5), 417–423.

DOI: 10.1080/01490450701436505

Google Scholar

[20] D.T. Wright, Oren A. "Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time." 2005. Geomicrobiol J 22:27– 53.

DOI: 10.1080/01490450590922532

Google Scholar