Expression and Inhibition Analysis of Recombinant Protease Inhibitor of Solamum Americanum in E. Coli

Article Preview

Abstract:

SaPIN2a, the proteinase inhibitor of nightshade (Solanum americanum), has been proposed to regulate proteolysis in phloem development. In this study, we expressed and characterized recombinant SaPIN2a in Escherichia coli. Purified recombinant SaPIN2a (rSaPIN2a) had a strong inhibitory effect on serine proteinase chymotrypsin (IC50 36.1 nmol/L), but its inhibitory activities toward trypsin (IC50 398.6 nmol/L) and especially toward subtilisin (IC50 5004 nmol/L) were low. It did not inhibit cysteine proteinase papain and aspartic proteinase cathepsin D. rSaPIN2a was a competitive inhibitor of trypsin, and a noncompetitive inhibitor of chymotrypsin and subtilisin.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

1053-1058

Citation:

Online since:

September 2011

Export:

Price:

[1] K. Esau, Anatomy of Seed Plants, 2nd ed., John Wiley & Sons Press, New York, (1977).

Google Scholar

[2] R. -D. Sjolund, The phloem sieve element: a river runs through it, Plant Cell, vol. 9, no. 7, pp.1137-1146, July (1997).

DOI: 10.1105/tpc.9.7.1137

Google Scholar

[3] E. -P. Beers, Programmed cell death during plant growth and development, Cell Death Differ, vol. 4, no. 8, pp.649-661, December (1997).

DOI: 10.1038/sj.cdd.4400297

Google Scholar

[4] E. -P. Beers, B.J. Woffenden, and C. Zhao, Plant proteolytic enzymes: possible roles during programmed cell death, Plant Mol. Biol., vol. 44, no. 3, pp.399-415, June (2000).

DOI: 10.1007/978-94-010-0934-8_12

Google Scholar

[5] Z. -F. Xu, W. -Q. Qi, X. -Z. Ouyang, E. Yeung, and M. -L. Chye, A proteinase inhibitor II of Solanum americanum is expressed in phloem, Plant Mol. Biol., vol. 47, no. 6, pp.727-738, December (2001).

Google Scholar

[6] Z. -F. Xu, W. -L. Teng, and M. -L. Chye, Inhibition of endogenous trypsin- and chymotrypsin-like activities in transgenic lettuce expressing heterogeneous proteinase inhibitor SaPIN2a, Planta, vol. 218, no. 4, pp.623-629, (2004).

DOI: 10.1007/s00425-003-1138-9

Google Scholar

[7] M. -L. Chye, S. -F. Sin, Z. -F. Xu, and E. -C. Yeung, Serine proteinase inhibitor proteins: exogenous and endogenous functions, Plant, vol. 42, no. 2, p.100–108, April (2006).

DOI: 10.1079/ivp2005741

Google Scholar

[8] M. -M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., vol. 72, no. 1-2, pp.248-254, May (1976).

DOI: 10.1016/0003-2697(76)90527-3

Google Scholar

[9] T. Hatakeyama, H. Kohzaki, and N. Yamasaki, A microassay for proteases using succinylcasein as a substrate, Anal. Biochem., vol. 204, no. 1, pp.181-184, July (1992).

DOI: 10.1016/0003-2697(92)90158-4

Google Scholar

[10] W. -A. Bubnis, and C. -M. Ofner III, The determination of 3-amino groups in soluble and poorly soluble proteinaceous materials by a spectrophotometric method using trinitrobenzenesulfonic acid, Anal. Biochem., vol. 207, no. 1, pp.129-133, November (1992).

DOI: 10.1016/0003-2697(92)90513-7

Google Scholar

[11] M. Rickauer, J. Fournier, and M. Esquerre-Tugaye, Induction of proteinase inhibitors in tobacco cell suspension culture by elicitors of Phytophthora parasitica var. nicotianae, Plant Physiol., vol. 90, no. 3, pp.1065-1070, November (1989).

DOI: 10.1104/pp.90.3.1065

Google Scholar

[12] Y. Yasuda, T. Kageyama, A. Akamine, M. Shibata, E. Kominami, Y. Uchiyama, and K. Yamamoto, Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D, J. Biochem. (Tokyo), vol. 125, no. 6, pp.1137-1143, March (1999).

DOI: 10.1093/oxfordjournals.jbchem.a022396

Google Scholar

[13] K. Mitsudo, A. Jayakumar, Y. Henderson, M. -J. Frederick, Y. Kang, M. Wang, A. -K. El-Naggar, and G. -L. Clayman, Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis, Biochemistry, vol. 42, no. 13, pp.3874-3881, March (2003).

DOI: 10.1021/bi027029v

Google Scholar

[14] J. Sambrook, E. -F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989).

DOI: 10.1002/jobm.19840240107

Google Scholar

[15] F. Altpeter, I. Diaz, H. McAuslane, K. Gaddour, P. Carbonero, and I. -K. Vasil, Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe, Mol. Breeding, vol. 5, no. 1, pp.53-63, (1999).

DOI: 10.1023/a:1009659911798

Google Scholar

[16] I. -H. Barrette-Ng, K. -K. Ng, M. -M. Cherney, G. Pearce, U. Ghani, C. -A. Ryan, and M. -N. James, Unbound form of tomato inhibitor-II reveals interdomain flexibility and conformational variability in the reactive site loops, J. Biol. Chem., vol. 278, no. 33, pp.31391-31400.

DOI: 10.1074/jbc.m304562200

Google Scholar

[17] I. -H. Barrette-Ng, K. -K. Ng, M. -M. Cherney, G. Pearce, C. -A. Ryan, and M. -N. James, Structural basis of inhibition revealed by a 1: 2 complex of the two-headed tomato inhibitor-II and subtilisin Carlsberg, J. Biol. Chem., vol. 278, no. 26, pp.24062-24071.

DOI: 10.1074/jbc.m302020200

Google Scholar