Control of Shell Thickness in Silica-Coating of AgI Nanoparticles

Article Preview

Abstract:

Silica-coating of AgI nanoparticles with a Stöber method was carried out to find out reaction conditions for control of the shell thickness. The AgI nanoparticles were prepared from AgClO4 and KI with the use of 3-mercaptopropyltrimethoxysilane (MPS) as a silane coupling agent and dimethylamine (DMA) catalyst for alkoxide hydrolysis. The silica-coating was performed at 4.5×10-6-4.5×10-5 M MPS, 11-20 M water, 0.002-0.1 M DMA and 0.005-0.04 M tetraethylorthosilicate at AgI concentrations of 0.1-1 mM. Consequently, AgI-silica core-shell particles could be prepared with the use of 4.5×10-5 M MPS, 20 M water, 0.01 M DMA and 1 mM AgI. Silica shell thickness could be varied from 15 to 28 nm with an increase in the TEOS concentration from 0.005 to 0.04 M.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 29-30)

Pages:

191-194

Citation:

Online since:

November 2007

Export:

Price:

[1] L. M. Liz-Marzán, M. Giersig and P. Mulvaney: Chem. Commun. (1996), p.731.

Google Scholar

[2] S. M. Marinakos, D. A. Shultz and D. L. Feldheim: Adv. Mater. Vol. 11 (1999), p.34.

Google Scholar

[3] V. V. Hardikar and E. Matijevic: J. Colloid Interface Sci. Vol. 221 (2000), p.133.

Google Scholar

[4] S. R. Hall, S. A. Davis and S. Mann: Langmuir Vol. 16 (2000), p.1454.

Google Scholar

[5] Y. Kobayashi, M. A. Correa-Duarte and L. M. Liz-Marzán: Langmuir Vol. 17 (2001), p.6375.

Google Scholar

[6] G. Cho, B. M. Fung, D. T. Glatzhofer, J. -S. Lee and Y. -G. Shul: Langmuir Vol. 17 (2001), p.456.

Google Scholar

[7] T. Tago, T. Hatsuta, R. Nagase, M. Kishida and K. Wakabayashi: Kagaku Kogaku Ronbunshu Vol. 27 (2001), p.288 (in Japanese).

DOI: 10.1252/kakoronbunshu.27.288

Google Scholar

[8] H. Wang, H. Nakamura, Y. Yao, H. Maeda and E. Abe: Chem. Lett. Vol. 30 (2001), p.1168.

Google Scholar

[9] Y. Lu, Y. Yin, Z. -Y. Li and Y. Xia: Nano Lett. Vol. 2 (2002) p.785.

Google Scholar

[10] C. Graf, D. L. J. Vossen, A. Imhof and A. van Blaaderen: Langmuir Vol. 19 (2003), p.6693.

Google Scholar

[11] E. Mine, A. Yamada, Y. Kobayashi, M. Konno and L. M. Liz-Marzán: J. Colloid Interface Sci. Vol. 264 (2003), p.385.

Google Scholar

[12] Y. Kobayashi, H. Katakami, E. Mine, D. Nagao, M. Konno and L. M. Liz-Marzán: J. Colloid Interface Sci. Vol. 283 (2005), p.392.

DOI: 10.1016/j.jcis.2004.08.184

Google Scholar

[13] Y. Kobayashi, M. Horie, M. Konno, B. Rodríguez-González and L. M. Liz-Marzán: J. Phys. Chem. B Vol. 107 (2003), p.7420.

DOI: 10.1021/jp027759c

Google Scholar

[14] M. Giersing, T. Ung, L. M. Márzan and P. Mulvaney: Adv. Mater. Vol. 9 (1997), p.570.

Google Scholar

[15] Y. Kobayashi, K. Misawa, M. Takeda, M. Kobayashi, M. Satake, Y. Kawazoe, N. Ohuchi, A. Kasuya and M. Konno: Colloids Surfaces A Vol. 251 (2004), p.197.

DOI: 10.1016/j.colsurfa.2004.10.007

Google Scholar

[16] Y. Wang, J. Mo, W. Cai, L. Yao and L. Zhang: Mater. Lett. Vol. 56 (2002), p.502.

Google Scholar

[17] D. Nagao, Y. Kon, T. Satoh and M. Konno: J. Chem. Eng. Japan Vol. 33 (2000), p.468.

Google Scholar