Retracted: Development of Bulk Metallic Glass Matrix Composites (BMGMC) by Additive Manufacturing: Modelling and Simulation – A Review: Part A

Retracted:

Retracted due to misconduct of the corresponding author, consisting in providing the article with an inaccurate authorship data, which include persons who have not participated sufficiently to take public responsibility for the contents.

Article Preview

Abstract:

Bulk metallic glasses (BMGs) and their composites (BMGMC) have emerged as competitive materials for structural engineering applications exhibiting superior tensile strength, hardness along with very high elastic strain limit. However, they suffer from a lack of ductility and subsequent low toughness due to the inherent brittleness of the glassy structure which render them to failure without appreciable yielding owing to mechanisms of rapid movement of shear bands all throughout the volume of the material. This severely limits their use in fabricating structural and machinery parts. Various mechanisms have been proposed to counter this effect. Introduction of secondary ductile phase in the form of in-situ nucleating and growing dendrites from melt during solidification have proved out to be best solution of this problem. Nucleation and growth of these ductile phases have been extensively studied over the last 16 years since their introduction for the first time in Zr-based BMGMC by Prof. Johnson at Caltech. Data about almost all types of phases appearing in different systems have been successfully reported. However, there is very little information available about the precise mechanism underlying their nucleation and growth during solidification in a copper mould during conventional vacuum casting and melt pool of additively manufactured parts. Various routes have been proposed to study this including experiments in microgravity, levitation in synchrotron light and modelling and simulation. In this report consisting of two parts which is a preamble of author’s PhD Project, a concise review about evolution of microstructure in BMGMC during additive manufacturing have been presented with the aim to address fundamental problem of lack in ductility along with prediction of grain size and phase evolution with the help of advanced modelling and simulation techniques. It has been systematically proposed that 2 and 3 dimensional cellular automaton method combined with finite element (CAFE) tools programmed on MATLAB® and simulated on Ansys® would best be able to describe this phenomenon in most efficient way. Present part consists of general introduction of bulk metallic glass matrix composites (BMGMC), problem of lack of ductility in them, measures to counter it, success stories and their additive manufacturing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-39

Online since:

June 2019

Export:

* - Corresponding Author

[1] Klement, W., R.H. Willens, and P.O.L. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys. Nature, 1960. 187(4740): pp.869-870.

DOI: 10.1038/187869b0

Google Scholar

[2] Telford, M., The case for bulk metallic glass. Materials Today, 2004. 7(3): pp.36-43.

Google Scholar

[3] Schuh, C.A., T.C. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Materialia, 2007. 55(12): pp.4067-4109.

DOI: 10.1016/j.actamat.2007.01.052

Google Scholar

[4] Inoue, A. and A. Takeuchi, Recent development and application products of bulk glassy alloys. Acta Materialia, 2011. 59(6): pp.2243-2267.

DOI: 10.1016/j.actamat.2010.11.027

Google Scholar

[5] Chen, H.S., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): pp.1505-1511.

DOI: 10.1016/0001-6160(74)90112-6

Google Scholar

[6] Drehman, A.J., A.L. Greer, and D. Turnbull, Bulk formation of a metallic glass: Pd40Ni40P20. Applied Physics Letters, 1982. 41(8): pp.716-717.

DOI: 10.1063/1.93645

Google Scholar

[7] Kui, H.W., A.L. Greer, and D. Turnbull, Formation of bulk metallic glass by fluxing. Applied Physics Letters, 1984. 45(6): pp.615-616.

DOI: 10.1063/1.95330

Google Scholar

[8] Wang, W.H., C. Dong, and C.H. Shek, Bulk metallic glasses. Materials Science and Engineering: R: Reports, 2004. 44(2–3): pp.45-89.

DOI: 10.1016/j.mser.2004.03.001

Google Scholar

[9] Cheng, Y.Q. and E. Ma, Atomic-level structure and structure–property relationship in metallic glasses. Progress in Materials Science, 2011. 56(4): pp.379-473.

DOI: 10.1016/j.pmatsci.2010.12.002

Google Scholar

[10] Qiao, J., H. Jia, and P.K. Liaw, Metallic glass matrix composites. Materials Science and Engineering: R: Reports, 2016. 100: pp.1-69.

DOI: 10.1016/j.mser.2015.12.001

Google Scholar

[11] Trexler, M.M. and N.N. Thadhani, Mechanical properties of bulk metallic glasses. Progress in Materials Science, 2010. 55(8): pp.759-839.

DOI: 10.1016/j.pmatsci.2010.04.002

Google Scholar

[12] Hays, C.C., C.P. Kim, and W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing \textit{in situ} Formed Ductile Phase Dendrite Dispersions. Physical Review Letters, 2000. 84(13): pp.2901-2904.

DOI: 10.1103/physrevlett.84.2901

Google Scholar

[13] Hofmann, D.C., et al., Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 2008. 451(7182): pp.1085-1089.

DOI: 10.1038/nature06598

Google Scholar

[14] Hofmann, D.C., Shape Memory Bulk Metallic Glass Composites. Science, 2010. 329(5997): pp.1294-1295.

DOI: 10.1126/science.1193522

Google Scholar

[15] Wu, Y., et al., Designing Bulk Metallic Glass Composites with Enhanced Formability and Plasticity. Journal of Materials Science & Technology, 2014. 30(6): pp.566-575.

DOI: 10.1016/j.jmst.2014.03.028

Google Scholar

[16] Guo, H., et al., Tensile ductility and necking of metallic glass. Nat Mater, 2007. 6(10): pp.735-739.

Google Scholar

[17] Jang, D. and J.R. Greer, Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater, 2010. 9(3): pp.215-219.

DOI: 10.1038/nmat2622

Google Scholar

[18] Choi—Yim, H., Synthesis and Characterization of Bulk Metallic Glass Matrix Composites. 1998, California Institute of Technology.

Google Scholar

[19] Choi-Yim, H., et al., Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Materialia, 2002. 50(10): pp.2737-2745.

DOI: 10.1016/s1359-6454(02)00113-1

Google Scholar

[20] Lee, M.L., Y. Li, and C.A. Schuh, Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Materialia, 2004. 52(14): pp.4121-4131.

DOI: 10.1016/j.actamat.2004.05.025

Google Scholar

[21] Pauly, S., et al., Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat Mater, 2010. 9(6): pp.473-477.

DOI: 10.1038/nmat2767

Google Scholar

[22] Wu, Y., et al., Bulk Metallic Glass Composites with Transformation-Mediated Work-Hardening and Ductility. Advanced Materials, 2010. 22(25): pp.2770-2773.

DOI: 10.1002/adma.201000482

Google Scholar

[23] Song, K.K., et al., Triple yielding and deformation mechanisms in metastable Cu47.5Zr47.5Al5 composites. Acta Materialia, 2012. 60(17): pp.6000-6012.

DOI: 10.1016/j.actamat.2012.07.015

Google Scholar

[24] Wu, D.Y., et al., Glass-forming ability, thermal stability of B2 CuZr phase, and crystallization kinetics for rapidly solidified Cu–Zr–Zn alloys. Journal of Alloys and Compounds, 2016. 664: pp.99-108.

DOI: 10.1016/j.jallcom.2015.12.187

Google Scholar

[25] Kim, C.P., et al., Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation. Scripta Materialia, 2011. 65(4): pp.304-307.

DOI: 10.1016/j.scriptamat.2011.04.037

Google Scholar

[26] Gao, W.-h., et al., Effects of Co and Al addition on martensitic transformation and microstructure in ZrCu-based shape memory alloys. Transactions of Nonferrous Metals Society of China, 2015. 25(3): pp.850-855.

DOI: 10.1016/s1003-6326(15)63673-1

Google Scholar

[27] Zhai, H., H. Wang, and F. Liu, A strategy for designing bulk metallic glass composites with excellent work-hardening and large tensile ductility. Journal of Alloys and Compounds, 2016. 685: pp.322-330.

DOI: 10.1016/j.jallcom.2016.05.290

Google Scholar

[28] Song, W., et al., Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Large-Sized and Ductile Metallic Glass Composites. Advanced Materials, 2016: p. n/a-n/a.

DOI: 10.1002/adma.201601954

Google Scholar

[29] Pekarskaya, E., C.P. Kim, and W.L. Johnson, In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. Journal of Materials Research, 2001. 16(09): pp.2513-2518.

DOI: 10.1557/jmr.2001.0344

Google Scholar

[30] Zhang, Q., Haifeng Zhang, Zhengwang Zhu, Zhuangqi Hu, Formation of High Strength In-situ Bulk Metallic Glass Composite with Enhanced Plasticity in Cu50Zr47:5Ti2:5 Alloy. Materials Transactions, 2005. 46(3): pp.730-733.

DOI: 10.2320/matertrans.46.730

Google Scholar

[31] Zhu, Z., et al., Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity. Scripta Materialia, 2010. 62(5): pp.278-281.

DOI: 10.1016/j.scriptamat.2009.11.018

Google Scholar

[32] Fan, C., R.T. Ott, and T.C. Hufnagel, Metallic glass matrix composite with precipitated ductile reinforcement. Applied Physics Letters, 2002. 81(6): pp.1020-1022.

DOI: 10.1063/1.1498864

Google Scholar

[33] Hu, X., et al., Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses. Acta Materialia, 2003. 51(2): pp.561-572.

DOI: 10.1016/s1359-6454(02)00438-x

Google Scholar

[34] Cheng, J.-L., et al., Innovative approach to the design of low-cost Zr-based BMG composites with good glass formation. Scientific Reports, 2013. 3: p. (2097).

DOI: 10.1038/srep02097

Google Scholar

[35] Wu, F.F., et al., Effect of annealing on the mechanical properties and fracture mechanisms of a ${\mathrm{Zr}}_{56.2} {\mathrm{Ti}}_{13.8}{\mathrm{Nb}}_{5.0} {\mathrm{Cu}}_{6.9} {\mathrm{Ni}}_{5.6} {\mathrm{Be}}_{12.5} $ bulk-metallic-glass composite. Physical Review B, 2007. 75(13): p.134201.

DOI: 10.1109/iciprm.2019.8819254

Google Scholar

[36] Chen, H.S., Ductile-brittle transition in metallic glasses. Materials Science and Engineering, 1976. 26(1): pp.79-82.

DOI: 10.1016/0025-5416(76)90228-7

Google Scholar

[37] Antonione, C., et al., Phase separation in multicomponent amorphous alloys. Journal of Non-Crystalline Solids, 1998. 232–234: pp.127-132.

DOI: 10.1016/s0022-3093(98)00486-4

Google Scholar

[38] Fan, C., C. Li, and A. Inoue, Nanocrystal composites in Zr–Nb–Cu–Al metallic glasses. Journal of Non-Crystalline Solids, 2000. 270(1–3): pp.28-33.

DOI: 10.1016/s0022-3093(00)00078-8

Google Scholar

[39] Fan, C. and A. Inoue, Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Applied Physics Letters, 2000. 77(1): pp.46-48.

DOI: 10.1063/1.126872

Google Scholar

[40] Basu, J., et al., Microstructure and mechanical properties of a partially crystallized La-based bulk metallic glass. Philosophical Magazine, 2003. 83(15): pp.1747-1760.

DOI: 10.1080/0141861861031000104163

Google Scholar

[41] Fan, C., et al., Properties of as-cast and structurally relaxed Zr-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2006. 352(2): pp.174-179.

DOI: 10.1016/j.jnoncrysol.2005.11.016

Google Scholar

[42] Gu, J., et al., Effects of annealing on the hardness and elastic modulus of a Cu36Zr48Al8Ag8 bulk metallic glass. Materials & Design, 2013. 47: pp.706-710.

DOI: 10.1016/j.matdes.2012.12.071

Google Scholar

[43] Tan, J., et al., Correlation between Internal States and Strength in Bulk Metallic Glass, in PRICM. 2013, John Wiley & Sons, Inc. pp.3199-3206.

DOI: 10.1002/9781118792148.ch394

Google Scholar

[44] Krämer, L., et al., Production of Bulk Metallic Glasses by Severe Plastic Deformation. Metals, 2015. 5(2): p.720.

Google Scholar

[45] Nishiyama, N., et al., The world's biggest glassy alloy ever made. Intermetallics, 2012. 30: pp.19-24.

DOI: 10.1016/j.intermet.2012.03.020

Google Scholar

[46] Inoue, A., N. Nishiyama, and T. Matsuda, Preparation of Bulk Glassy Pd<SUB>40</SUB>Ni<SUB>10</SUB>Cu<SUB>30</SUB>P<SUB>20</SUB> Alloy of 40 mm in Diameter by Water Quenching. Materials Transactions, JIM, 1996. 37(2): pp.181-184.

DOI: 10.2320/matertrans1989.37.181

Google Scholar

[47] He, Y., R.B. Schwarz, and J.I. Archuleta, Bulk glass formation in the Pd–Ni–P system. Applied Physics Letters, 1996. 69(13): pp.1861-1863.

DOI: 10.1063/1.117458

Google Scholar

[48] Inoue, A., T. Zhang, and T. Masumoto, Zr&ndash;Al&ndash;Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions, JIM, 1990. 31(3): pp.177-183.

DOI: 10.2320/matertrans1989.31.177

Google Scholar

[49] Peker, A. and W.L. Johnson, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters, 1993. 63(17): pp.2342-2344.

Google Scholar

[50] Tan, J., et al., Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass. Intermetallics, 2011. 19(4): pp.567-571.

DOI: 10.1016/j.intermet.2010.12.006

Google Scholar

[51] Biffi, C.A., A. Figini Albisetti, and A. Tuissi. CuZr based shape memory alloys: effect of Cr and Co on the martensitic transformation. in Materials Science Forum. 2013. Trans Tech Publ.

DOI: 10.4028/www.scientific.net/msf.738-739.167

Google Scholar

[52] Cheng, J.L. and G. Chen, Glass formation of Zr–Cu–Ni–Al bulk metallic glasses correlated with L → Zr2Cu + ZrCu pseudo binary eutectic reaction. Journal of Alloys and Compounds, 2013. 577: pp.451-455.

DOI: 10.1016/j.jallcom.2013.06.126

Google Scholar

[53] Chen, G., et al., Enhanced plasticity in a Zr-based bulk metallic glass composite with in situ formed intermetallic phases. Applied Physics Letters, 2009. 95(8): p.081908.

DOI: 10.1063/1.3211912

Google Scholar

[54] Jeon, C., et al., Effects of Effective Dendrite Size on Tensile Deformation Behavior in Ti-Based Dendrite-Containing Amorphous Matrix Composites Modified from Ti-6Al-4V Alloy. Metallurgical and Materials Transactions A, 2015. 46(1): pp.235-250.

DOI: 10.1007/s11661-014-2531-7

Google Scholar

[55] Chu, M.Y., et al., Quasi-static and dynamic deformation behaviors of an in-situ Ti-based metallic glass matrix composite. Journal of Alloys and Compounds, 2015. 640: pp.305-310.

DOI: 10.1016/j.jallcom.2015.03.253

Google Scholar

[56] Wang, Y.S., et al., The role of the interface in a Ti-based metallic glass matrix composite with in situ dendrite reinforcement. Surface and Interface Analysis, 2014. 46(5): pp.293-296.

DOI: 10.1002/sia.5413

Google Scholar

[57] Gibson, I., W.D. Rosen, and B. Stucker, Development of Additive Manufacturing Technology, in Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. 2010, Springer US: Boston, MA. pp.36-58.

DOI: 10.1007/978-1-4419-1120-9_2

Google Scholar

[58] Spears, T.G. and S.A. Gold, In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Materials and Manufacturing Innovation, 2016. 5(1): pp.1-25.

DOI: 10.1186/s40192-016-0045-4

Google Scholar

[59] Pauly, S., et al., Processing metallic glasses by selective laser melting. Materials Today, 2013. 16(1–2): pp.37-41.

DOI: 10.1016/j.mattod.2013.01.018

Google Scholar

[60] Schroers, J., Processing of Bulk Metallic Glass. Advanced Materials, 2010. 22(14): pp.1566-1597.

DOI: 10.1002/adma.200902776

Google Scholar

[61] Li, X.P., et al., Selective laser melting of Zr-based bulk metallic glasses: Processing, microstructure and mechanical properties. Materials & Design, 2016. 112: pp.217-226.

DOI: 10.1016/j.matdes.2016.09.071

Google Scholar

[62] Zheng, B., et al., Processing and Behavior of Fe-Based Metallic Glass Components via Laser-Engineered Net Shaping. Metallurgical and Materials Transactions A, 2009. 40(5): pp.1235-1245.

DOI: 10.1007/s11661-009-9828-y

Google Scholar

[63] Olakanmi, E.O., R.F. Cochrane, and K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Progress in Materials Science, 2015. 74: pp.401-477.

DOI: 10.1016/j.pmatsci.2015.03.002

Google Scholar

[64] Buchbinder, D., et al., High Power Selective Laser Melting (HP SLM) of Aluminum Parts. Physics Procedia, 2011. 12: pp.271-278.

DOI: 10.1016/j.phpro.2011.03.035

Google Scholar

[65] Li, Y. and D. Gu, Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study. Additive Manufacturing, 2014. 1–4: pp.99-109.

DOI: 10.1016/j.addma.2014.09.001

Google Scholar

[66] Yap, C.Y., et al., Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2015. 2(4): p.041101.

Google Scholar

[67] Romano, J., et al., Temperature distribution and melt geometry in laser and electron-beam melting processes – A comparison among common materials. Additive Manufacturing, 2015. 8: pp.1-11.

DOI: 10.1016/j.addma.2015.07.003

Google Scholar

[68] Sun, H. and K.M. Flores, Microstructural Analysis of a Laser-Processed Zr-Based Bulk Metallic Glass. Metallurgical and Materials Transactions A, 2010. 41(7): pp.1752-1757.

DOI: 10.1007/s11661-009-0151-4

Google Scholar

[69] Yang, G., et al., Laser solid forming Zr-based bulk metallic glass. Intermetallics, 2012. 22: pp.110-115.

DOI: 10.1016/j.intermet.2011.10.008

Google Scholar

[70] Zhang, Y., et al., Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming. Intermetallics, 2015. 66: pp.22-30.

DOI: 10.1016/j.intermet.2015.06.007

Google Scholar

[71] Frazier, W.E., Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 2014. 23(6): pp.1917-1928.

Google Scholar

[72] Wong, K.V. and A. Hernandez, A Review of Additive Manufacturing. ISRN Mechanical Engineering, 2012. 2012: p.10.

Google Scholar

[73] Travitzky, N., et al., Additive Manufacturing of Ceramic-Based Materials. Advanced Engineering Materials, 2014. 16(6): pp.729-754.

DOI: 10.1002/adem.201400097

Google Scholar

[74] Baufeld, B., E. Brandl, and O. van der Biest, Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition. Journal of Materials Processing Technology, 2011. 211(6): pp.1146-1158.

DOI: 10.1016/j.jmatprotec.2011.01.018

Google Scholar

[75] Chen, Y., C. Zhou, and J. Lao, A layerless additive manufacturing process based on CNC accumulation. Rapid Prototyping Journal, 2011. 17(3): pp.218-227.

DOI: 10.1108/13552541111124806

Google Scholar

[76] Kawahito, Y., et al., High-power fiber laser welding and its application to metallic glass Zr55Al10Ni5Cu30. Materials Science and Engineering: B, 2008. 148(1–3): pp.105-109.

DOI: 10.1016/j.mseb.2007.09.062

Google Scholar

[77] Kim, J.H., et al., Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass. Materials Science and Engineering: A, 2007. 449–451: pp.872-875.

DOI: 10.1016/j.msea.2006.02.323

Google Scholar

[78] Li, B., et al., Laser welding of Zr45Cu48Al7 bulk glassy alloy. Journal of Alloys and Compounds, 2006. 413(1–2): pp.118-121.

DOI: 10.1016/j.jallcom.2005.07.005

Google Scholar

[79] Wang, G., et al., Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass. Materials Science and Engineering: A, 2012. 541: pp.33-37.

DOI: 10.1016/j.msea.2012.01.114

Google Scholar

[80] Wang, H.S., et al., Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding. Materials Science and Engineering: A, 2010. 528(1): pp.338-341.

DOI: 10.1016/j.msea.2010.09.014

Google Scholar

[81] Wang, H.-S., et al., The effects of initial welding temperature and welding parameters on the crystallization behaviors of laser spot welded Zr-based bulk metallic glass. Materials Chemistry and Physics, 2011. 129(1–2): pp.547-552.

DOI: 10.1016/j.matchemphys.2011.04.067

Google Scholar

[82] Acharya, R. and S. Das, Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2015. 46a(9): pp.3864-3875.

DOI: 10.1007/s11661-015-2912-6

Google Scholar

[83] Sames, W.J., et al., The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 2016. 61(5): pp.315-360.

Google Scholar

[84] Harooni, A., et al., Processing window development for laser cladding of zirconium on zirconium alloy. Journal of Materials Processing Technology, 2016. 230: pp.263-271.

DOI: 10.1016/j.jmatprotec.2015.11.028

Google Scholar

[85] Wu, X. and Y. Hong, Fe-based thick amorphous-alloy coating by laser cladding. Surface and Coatings Technology, 2001. 141(2–3): pp.141-144.

DOI: 10.1016/s0257-8972(01)01263-4

Google Scholar

[86] Wu, X., B. Xu, and Y. Hong, Synthesis of thick Ni66Cr5Mo4Zr6P15B4 amorphous alloy coating and large glass-forming ability by laser cladding. Materials Letters, 2002. 56(5): pp.838-841.

DOI: 10.1016/s0167-577x(02)00624-9

Google Scholar

[87] Yue, T.M. and Y.P. Su, Laser cladding of SiC reinforced Zr65Al7.5Ni10Cu17.5 amorphous coating on magnesium substrate. Applied Surface Science, 2008. 255(5, Part 1): pp.1692-1698.

DOI: 10.1016/j.apsusc.2008.06.036

Google Scholar

[88] Yue, T.M., Y.P. Su, and H.O. Yang, Laser cladding of Zr65Al7.5Ni10Cu17.5 amorphous alloy on magnesium. Materials Letters, 2007. 61(1): pp.209-212.

DOI: 10.1016/j.matlet.2006.04.033

Google Scholar

[89] Zhang, P., et al., Synthesis of Fe–Ni–B–Si–Nb amorphous and crystalline composite coatings by laser cladding and remelting. Surface and Coatings Technology, 2011. 206(6): pp.1229-1236.

DOI: 10.1016/j.surfcoat.2011.08.039

Google Scholar

[90] Zhu, Q., et al., Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding. Applied Surface Science, 2007. 253(17): pp.7060-7064.

DOI: 10.1016/j.apsusc.2007.02.055

Google Scholar

[91] Lan, S., et al., Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition. Applied Physics Letters, 2016. 108(21): p.211907.

DOI: 10.1063/1.4952724

Google Scholar

[92] Zu, F.-Q., Temperature-Induced Liquid-Liquid Transition in Metallic Melts: A Brief Review on the New Physical Phenomenon. Metals, 2015. 5(1): p.395.

DOI: 10.3390/met5010395

Google Scholar

[93] Wei, S., et al., Liquid–liquid transition in a strong bulk metallic glass-forming liquid. Nat Commun, 2013. 4.

DOI: 10.1038/ncomms3083

Google Scholar

[94] Boettinger, W.J., et al., Phase-Field Simulation of Solidification. Annual Review of Materials Research, 2002. 32(1): pp.163-194.

Google Scholar

[95] Emmerich, H., Phase-field modelling for metals and colloids and nucleation therein—an overview. Journal of Physics: Condensed Matter, 2009. 21(46): p.464103.

DOI: 10.1088/0953-8984/21/46/464103

Google Scholar

[96] Emmerich, H., et al., Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview. Advances in Physics, 2012. 61(6): pp.665-743.

DOI: 10.1080/00018732.2012.737555

Google Scholar

[97] Gong, X. and K. Chou, Phase-Field Modeling of Microstructure Evolution in Electron Beam Additive Manufacturing. JOM, 2015. 67(5): pp.1176-1182.

DOI: 10.1007/s11837-015-1352-5

Google Scholar

[98] Gránásy, L., et al., Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review. Metallurgical and Materials Transactions A, 2014. 45(4): pp.1694-1719.

DOI: 10.1007/s11661-013-1988-0

Google Scholar

[99] Wang, T. and R.E. Napolitano, A Phase-Field Model for Phase Transformations in Glass-Forming Alloys. Metallurgical and Materials Transactions A, 2012. 43(8): pp.2662-2668.

DOI: 10.1007/s11661-012-1136-2

Google Scholar

[100] Rappaz, M. and C.A. Gandin, Probabilistic modelling of microstructure formation in solidification processes. Acta Metallurgica et Materialia, 1993. 41(2): pp.345-360.

DOI: 10.1016/0956-7151(93)90065-z

Google Scholar

[101] Charbon, C. and M. Rappaz, 3D probabilistic modelling of equiaxed eutectic solidification. Modelling and Simulation in Materials Science and Engineering, 1993. 1(4): p.455.

DOI: 10.1088/0965-0393/1/4/009

Google Scholar

[102] Gandin, C.A., R.J. Schaefer, and M. Rappax, Analytical and numerical predictions of dendritic grain envelopes. Acta Materialia, 1996. 44(8): pp.3339-3347.

DOI: 10.1016/1359-6454(95)00433-5

Google Scholar

[103] Gandin, C.A. and M. Rappaz, A 3D Cellular Automaton algorithm for the prediction of dendritic grain growth. Acta Materialia, 1997. 45(5): pp.2187-2195.

DOI: 10.1016/s1359-6454(96)00303-5

Google Scholar

[104] Gandin, C.A. and M. Rappaz, A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metallurgica et Materialia, 1994. 42(7): pp.2233-2246.

DOI: 10.1016/0956-7151(94)90302-6

Google Scholar

[105] Chen, S., G. Guillemot, and C.-A. Gandin, 3D Coupled Cellular Automaton (CA)–Finite Element (FE) Modeling for Solidification Grain Structures in Gas Tungsten Arc Welding (GTAW). ISIJ International, 2014. 54(2): pp.401-407.

DOI: 10.2355/isijinternational.54.401

Google Scholar

[106] Chen, S., Three dimensional Cellular Automaton-Finite Element (CAFE) modeling for the grain structures development in Gas Tungsten/Metal Arc Welding processes. 2014, Ecole Nationale Supérieure des Mines de Paris.

DOI: 10.1016/j.actamat.2016.05.011

Google Scholar

[107] Tsai, D.-C. and W.-S. Hwang, A Three Dimensional Cellular Automaton Model for the Prediction of Solidification Morphologies of Brass Alloy by Horizontal Continuous Casting and Its Experimental Verification. MATERIALS TRANSACTIONS, 2011. 52(4): pp.787-794.

DOI: 10.2320/matertrans.m2010402

Google Scholar

[108] Wei, L., et al., Low artificial anisotropy cellular automaton model and its applications to the cell-to-dendrite transition in directional solidification. Materials Discovery.

DOI: 10.1016/j.md.2016.06.001

Google Scholar

[109] Zinoviev, A., et al., Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method. Materials & Design, 2016. 106: pp.321-329.

DOI: 10.1016/j.matdes.2016.05.125

Google Scholar

[110] Wang, Z.-j., et al., Simulation of Microstructure during Laser Rapid Forming Solidification Based on Cellular Automaton. Mathematical Problems in Engineering, 2014. 2014: p.9.

DOI: 10.1155/2014/627528

Google Scholar

[111] Zhou, X., et al., Simulation of microstructure evolution during hybrid deposition and micro-rolling process. Journal of Materials Science, 2016. 51(14): pp.6735-6749.

DOI: 10.1007/s10853-016-9961-0

Google Scholar

[112] Zhang, J., et al. Probabilistic simulation of solidification microstructure evolution during laser-based metal deposition. in Proceedings of 2013 Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference. (2013).

Google Scholar

[113] Greer, A.L., Metallic Glasses. Science, 1995. 267(5206): pp.1947-1953.

Google Scholar

[114] Güntherodt, H.J., Metallic glasses, in Festkörperprobleme 17: Plenary Lectures of the Divisions Semiconductor Physics" "Metal Physics" "Low Temperature Physics" "Thermodynamics and Statistical Physics" "Crystallography" "Magnetism" "Surface Physics, of the German Physical Society Münster, March 7–12, 1977, J. Treusch, Editor. 1977, Springer Berlin Heidelberg: Berlin, Heidelberg. pp.25-53.

DOI: 10.1007/bfb0108599

Google Scholar

[115] Inoue, A., High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates (<I>Overview</I>). Materials Transactions, JIM, 1995. 36(7): pp.866-875.

DOI: 10.2320/matertrans1989.36.866

Google Scholar

[116] Johnson, W.L., Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bulletin, 1999. 24(10): pp.42-56.

DOI: 10.1557/s0883769400053252

Google Scholar

[117] Matthieu, M., Relaxation and physical aging in network glasses: a review. Reports on Progress in Physics, 2016. 79(6): p.066504.

Google Scholar

[118] Hofmann, D.C. and W.L. Johnson. Improving Ductility in Nanostructured Materials and Metallic Glasses:Three Laws,. in Materials Science Forum. 2010. Trans Tech Publ.

DOI: 10.4028/www.scientific.net/msf.633-634.657

Google Scholar

[119] Shi, Y. and M.L. Falk, Does metallic glass have a backbone? The role of percolating short range order in strength and failure. Scripta Materialia, 2006. 54(3): pp.381-386.

DOI: 10.1016/j.scriptamat.2005.09.053

Google Scholar

[120] Mattern, N., et al., Short-range order of Cu–Zr metallic glasses. Journal of Alloys and Compounds, 2009. 485(1–2): pp.163-169.

DOI: 10.1016/j.jallcom.2009.05.111

Google Scholar

[121] Jiang, M.Q. and L.H. Dai, Short-range-order effects on intrinsic plasticity of metallic glasses. Philosophical Magazine Letters, 2010. 90(4): pp.269-277.

DOI: 10.1080/09500831003630781

Google Scholar

[122] Zhang, F., et al., Composition-dependent stability of the medium-range order responsible for metallic glass formation. Acta Materialia, 2014. 81: pp.337-344.

DOI: 10.1016/j.actamat.2014.08.041

Google Scholar

[123] Sheng, H.W., et al., Atomic packing and short-to-medium-range order in metallic glasses. Nature, 2006. 439(7075): pp.419-425.

DOI: 10.1038/nature04421

Google Scholar

[124] Cheng, Y.Q., E. Ma, and H.W. Sheng, Atomic Level Structure in Multicomponent Bulk Metallic Glass. Physical Review Letters, 2009. 102(24): p.245501.

DOI: 10.1103/physrevlett.102.245501

Google Scholar

[125] Nelson, D.R., Order, frustration, and defects in liquids and glasses. Physical Review B, 1983. 28(10): pp.5515-5535.

DOI: 10.1103/physrevb.28.5515

Google Scholar

[126] Ma, E., Tuning order in disorder. Nat Mater, 2015. 14(6): pp.547-552.

Google Scholar

[127] Greer, A.L., Confusion by design. Nature, 1993. 366(6453): pp.303-304.

Google Scholar

[128] Chen, H.S., Glassy metals. Reports on Progress in Physics, 1980. 43(4): p.353.

Google Scholar

[129] Turnbull, D., Under what conditions can a glass be formed? Contemporary Physics, 1969. 10(5): pp.473-488.

DOI: 10.1080/00107516908204405

Google Scholar

[130] Akhtar, D., B. Cantor, and R.W. Cahn, Diffusion rates of metals in a NiZr2 metallic glass. Scripta Metallurgica, 1982. 16(4): pp.417-420.

DOI: 10.1016/0036-9748(82)90164-8

Google Scholar

[131] Akhtar, D., B. Cantor, and R.W. Cahn, Measurements of diffusion rates of Au in metal-metal and metal-metalloid glasses. Acta Metallurgica, 1982. 30(8): pp.1571-1577.

DOI: 10.1016/0001-6160(82)90177-8

Google Scholar

[132] Akhtar, D. and R.D.K. Misra, Impurity diffusion in a NiNb metallic glass. Scripta Metallurgica, 1985. 19(5): pp.603-607.

DOI: 10.1016/0036-9748(85)90345-x

Google Scholar

[133] Inoue, A., T. Zhang, and T. Masumoto, Glass-forming ability of alloys. Journal of Non-Crystalline Solids, 1993. 156: pp.473-480.

DOI: 10.1016/0022-3093(93)90003-g

Google Scholar

[134] Lu, Z.P., Y. Liu, and C.T. Liu, Evaluation Of Glass-Forming Ability, in Bulk Metallic Glasses, M. Miller and P. Liaw, Editors. 2008, Springer US: Boston, MA. pp.87-115.

DOI: 10.1007/978-0-387-48921-6_4

Google Scholar

[135] Yi, J., et al., Glass-Forming Ability and Crystallization Behavior of Al86Ni9La5 Metallic Glass with Si Addition Advanced Engineering Materials, 2016. 18(6): pp.972-977.

DOI: 10.1002/adem.201500354

Google Scholar

[136] Wang, L.-M., et al., A universal, criterion for metallic glass formation. Applied Physics Letters, 2012. 100(26): p.261913.

DOI: 10.1063/1.4731881

Google Scholar

[137] Donald, I.W. and H.A. Davies, Prediction of glass-forming ability for metallic systems. Journal of Non-Crystalline Solids, 1978. 30(1): pp.77-85.

DOI: 10.1016/0022-3093(78)90058-3

Google Scholar

[138] Park, E.S. and D.H. Kim, Design of Bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review. Metals and Materials International, 2005. 11(1): pp.19-27.

DOI: 10.1007/bf03027480

Google Scholar

[139] Chen, M., A brief overview of bulk metallic glasses. NPG Asia Mater, 2011. 3: pp.82-90.

DOI: 10.1038/asiamat.2011.30

Google Scholar

[140] Park, E.S., H.J. Chang, and D.H. Kim, Effect of addition of Be on glass-forming ability, plasticity and structural change in Cu–Zr bulk metallic glasses. Acta Materialia, 2008. 56(13): pp.3120-3131.

DOI: 10.1016/j.actamat.2008.02.044

Google Scholar

[141] Guo, G.-Q., S.-Y. Wu, and L. Yang, Structural Origin of the Enhanced Glass-Forming Ability Induced by Microalloying Y in the ZrCuAl Alloy. Metals, 2016. 6(4): p.67.

DOI: 10.3390/met6040067

Google Scholar

[142] Cheng, Y.Q., E. Ma, and H.W. Sheng, Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids. Applied Physics Letters, 2008. 93(11): p.111913.

DOI: 10.1063/1.2987727

Google Scholar

[143] Jia, P., et al., A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Materialia, 2006. 54(12): pp.2165-2168.

DOI: 10.1016/j.scriptamat.2006.02.042

Google Scholar

[144] Miracle, D.B., et al., An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability. International Materials Reviews, 2010. 55(4): pp.218-256.

DOI: 10.1179/095066010x12646898728200

Google Scholar

[145] Lu, Z.P. and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): pp.3501-3512.

DOI: 10.1016/s1359-6454(02)00166-0

Google Scholar

[146] Lu, Z.P. and C.T. Liu, A new approach to understanding and measuring glass formation in bulk amorphous materials. Intermetallics, 2004. 12(10–11): pp.1035-1043.

DOI: 10.1016/j.intermet.2004.04.032

Google Scholar

[147] Li, Y., et al., Glass forming ability of bulk glass forming alloys. Scripta Materialia, 1997. 36(7): pp.783-787.

DOI: 10.1016/s1359-6462(96)00448-4

Google Scholar

[148] Kim, Y.C., et al., Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength. Journal of Non-Crystalline Solids, 2003. 325(1–3): pp.242-250.

DOI: 10.1016/s0022-3093(03)00327-2

Google Scholar

[149] Wu, J., et al., New insight on glass-forming ability and designing Cu-based bulk metallic glasses: The solidification range perspective. Materials & Design, 2014. 61: pp.199-202.

DOI: 10.1016/j.matdes.2014.04.070

Google Scholar

[150] Shen, T.D., B.R. Sun, and S.W. Xin, Effects of metalloids on the thermal stability and glass forming ability of bulk ferromagnetic metallic glasses. Journal of Alloys and Compounds, 2015. 631: pp.60-66.

DOI: 10.1016/j.jallcom.2015.01.070

Google Scholar

[151] Li, P., et al., Glass forming ability, thermodynamics and mechanical properties of novel Ti–Cu–Ni–Zr–Hf bulk metallic glasses. Materials & Design, 2014. 53: pp.145-151.

DOI: 10.1016/j.matdes.2013.06.060

Google Scholar

[152] Li, P., et al., Glass forming ability and thermodynamics of new Ti-Cu-Ni-Zr bulk metallic glasses. Journal of Non-Crystalline Solids, 2012. 358(23): pp.3200-3204.

DOI: 10.1016/j.jnoncrysol.2012.08.005

Google Scholar

[153] i, F., et al., Structural origin underlying poor glass forming ability of Al metallic glass. Journal of Applied Physics, 2011. 110(1): p.013519.

DOI: 10.1063/1.3605510

Google Scholar

[154] Fan, C., et al., Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr–Ni–Cu–Al metallic glasses. Applied Physics Letters, 2001. 79(7): pp.1024-1026.

DOI: 10.1063/1.1391396

Google Scholar

[155] Yang, H., K.Y. Lim, and Y. Li, Multiple maxima in glass-forming ability in Al–Zr–Ni system. Journal of Alloys and Compounds, 2010. 489(1): pp.183-187.

DOI: 10.1016/j.jallcom.2009.09.049

Google Scholar

[156] Xu, D., G. Duan, and W.L. Johnson, Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper. Physical Review Letters, 2004. 92(24): p.245504.

DOI: 10.1103/physrevlett.92.245504

Google Scholar

[157] Zhang, K., et al., Computational studies of the glass-forming ability of model bulk metallic glasses. The Journal of Chemical Physics, 2013. 139(12): p.124503.

DOI: 10.1063/1.4821637

Google Scholar

[158] Amokrane, S., A. Ayadim, and L. Levrel, Structure of the glass-forming metallic liquids by ab-initio and classical molecular dynamics, a case study: Quenching the Cu60Ti20Zr20 alloy. Journal of Applied Physics, 2015. 118(19): p.194903.

DOI: 10.1063/1.4935876

Google Scholar

[159] Inoue, A. and A. Takeuchi, Bulk Amorphous, Nano-Crystalline and Nano-Quasicrystalline Alloys IV. Recent Progress in Bulk Glassy Alloys. Materials Transactions, 2002. 43(8): pp.1892-1906.

DOI: 10.2320/matertrans.43.1892

Google Scholar

[160] Inoue, A., B. Shen, and A. Takeuchi, Developments and Applications of Bulk Glassy Alloys in Late Transition Metal Base System. MATERIALS TRANSACTIONS, 2006. 47(5): pp.1275-1285.

DOI: 10.2320/matertrans.47.1275

Google Scholar

[161] Weinberg, M.C., et al., Critical cooling rate calculations for glass formation. Journal of Non-Crystalline Solids, 1990. 123(1): pp.90-96.

DOI: 10.1016/0022-3093(90)90776-i

Google Scholar

[162] Ray, C.S., et al., A new DTA method for measuring critical cooling rate for glass formation. Journal of Non-Crystalline Solids, 2005. 351(16–17): pp.1350-1358.

DOI: 10.1016/j.jnoncrysol.2005.03.029

Google Scholar

[163] Kim, J.-H., et al., Estimation of critical cooling rates for glass formation in bulk metallic glasses through non-isothermal thermal analysis. Metals and Materials International, 2005. 11(1): pp.1-9.

DOI: 10.1007/bf03027478

Google Scholar

[164] Zhu, D.M., et al. Method for estimating the critical cooling rate for glass formation from isothermal TTT data. in Key Engineering Materials. 2007. Trans Tech Publ.

DOI: 10.4028/www.scientific.net/kem.336-338.1874

Google Scholar

[165] Weinberg, M.C., D.R. Uhlmann, and E.D. Zanotto, Nose Method, of Calculating Critical Cooling Rates for Glass Formation. Journal of the American Ceramic Society, 1989. 72(11): pp.2054-2058.

DOI: 10.1111/j.1151-2916.1989.tb06030.x

Google Scholar

[166] Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): pp.279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[167] Wang, D., et al., Bulk metallic glass formation in the binary Cu–Zr system. Applied Physics Letters, 2004. 84(20): pp.4029-4031.

DOI: 10.1063/1.1751219

Google Scholar

[168] Lee, D.M., et al., A deep eutectic point in quaternary Zr–Ti–Ni–Cu system and bulk metallic glass formation near the eutectic point. Intermetallics, 2012. 21(1): pp.67-74.

DOI: 10.1016/j.intermet.2011.09.006

Google Scholar

[169] Ma, D., et al., Correlation between Glass Formation and Type of Eutectic Coupled Zone in Eutectic Alloys. MATERIALS TRANSACTIONS, 2003. 44(10): pp.2007-2010.

DOI: 10.2320/matertrans.44.2007

Google Scholar

[170] Jian, X., Complete Composition Tunability of Cu (Ni)-Ti-Zr Alloys for Bulk Metallic Glass Formation.

Google Scholar

[171] Ma, H., et al., Doubling the Critical Size for Bulk Metallic Glass Formation in the Mg–Cu–Y Ternary System. Journal of Materials Research, 2011. 20(9): pp.2252-2255.

DOI: 10.1557/jmr.2005.0307

Google Scholar

[172] Lu, Z.P. and C.T. Liu, Glass Formation Criterion for Various Glass-Forming Systems. Physical Review Letters, 2003. 91(11): p.115505.

DOI: 10.1103/physrevlett.91.115505

Google Scholar

[173] Lad, K.N., Correlation between atomic-level structure, packing efficiency and glass-forming ability in Cu–Zr metallic glasses. Journal of Non-Crystalline Solids, 2014. 404: pp.55-60.

DOI: 10.1016/j.jnoncrysol.2014.07.035

Google Scholar

[174] Mukherjee, S., et al., Overheating threshold and its effect on time–temperature-transformation diagrams of zirconium based bulk metallic glasses. Applied Physics Letters, 2004. 84(24): pp.5010-5012.

DOI: 10.1063/1.1763219

Google Scholar

[175] Brazhkin, V.V., Metastable phases and metastable, phase diagrams. Journal of Physics: Condensed Matter, 2006. 18(42): p.9643.

DOI: 10.1088/0953-8984/18/42/010

Google Scholar

[176] Baricco, M., et al., Metastable phases and phase diagrams. La Metallurgia Italiana, 2004(11).

Google Scholar

[177] Brazhkin, V.V., Metastable phases, phase transformations, and phase diagrams in physics and chemistry. Physics-Uspekhi, 2006. 49(7): pp.719-724.

Google Scholar

[178] Taub, A.I. and F. Spaepen, The kinetics of structural relaxation of a metallic glass. Acta Metallurgica, 1980. 28(12): pp.1781-1788.

DOI: 10.1016/0001-6160(80)90031-0

Google Scholar

[179] Tsao, S.S. and F. Spaepen, Structural relaxation of a metallic glass near equilibrium. Acta Metallurgica, 1985. 33(5): pp.881-889.

DOI: 10.1016/0001-6160(85)90112-9

Google Scholar

[180] Akhtar, D. and R.D.K. Misra, Effect of thermal relaxation on diffusion in a metallic glass. Scripta Metallurgica, 1986. 20(5): pp.627-631.

DOI: 10.1016/0036-9748(86)90479-5

Google Scholar

[181] Qiao, J.C. and J.M. Pelletier, Dynamic Mechanical Relaxation in Bulk Metallic Glasses: A Review. Journal of Materials Science & Technology, 2014. 30(6): pp.523-545.

DOI: 10.1016/j.jmst.2014.04.018

Google Scholar

[182] Liu, C., E. Pineda, and D. Crespo, Mechanical Relaxation of Metallic Glasses: An Overview of Experimental Data and Theoretical Models. Metals, 2015. 5(2): p.1073.

DOI: 10.3390/met5021073

Google Scholar

[183] Wen, P., et al., Mechanical relaxation in supercooled liquids of bulk metallic glasses. physica status solidi (a), 2010. 207(12): pp.2693-2703.

DOI: 10.1002/pssa.201026475

Google Scholar

[184] Levine, D. and P.J. Steinhardt, Proceedings of the international conference on the theory of the structures of non-crystalline solids Quasicrystals. Journal of Non-Crystalline Solids, 1985. 75(1): pp.85-89.

DOI: 10.1016/0022-3093(85)90207-8

Google Scholar

[185] Steinhardt, P.J., Quasicrystals: a new form of matter. Endeavour, 1990. 14(3): pp.112-116.

DOI: 10.1016/0160-9327(90)90003-a

Google Scholar

[186] Janot, C., The structure of quasicrystals. Journal of Non-Crystalline Solids, 1993. 156: pp.852-864.

DOI: 10.1016/0022-3093(93)90085-c

Google Scholar

[187] Xing, L.Q., et al., Effect of cooling rate on the precipitation of quasicrystals from the Zr–Cu–Al–Ni–Ti amorphous alloy. Applied Physics Letters, 1998. 73(15): pp.2110-2112.

DOI: 10.1063/1.122394

Google Scholar

[188] Xing, L.Q., et al., High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr–Ti–Cu–Ni–Al amorphous alloys. Applied Physics Letters, 1999. 74(5): pp.664-666.

DOI: 10.1063/1.122980

Google Scholar

[189] Guo, S.F., et al., Fe-based bulk metallic glasses: Brittle or ductile? Applied Physics Letters, 2014. 105(16): p.161901.

DOI: 10.1063/1.4899124

Google Scholar

[190] Gu, X.J., S.J. Poon, and G.J. Shiflet, Mechanical properties of iron-based bulk metallic glasses. Journal of Materials Research, 2007. 22(02): pp.344-351.

DOI: 10.1557/jmr.2007.0036

Google Scholar

[191] Xi, X.K., et al., Fracture of Brittle Metallic Glasses: Brittleness or Plasticity. Physical Review Letters, 2005. 94(12): p.125510.

Google Scholar

[192] Chen, T.-H. and C.-K. Tsai, The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions. Materials, 2015. 8(4): p.1831.

DOI: 10.3390/ma8041831

Google Scholar

[193] Xue, Y.F., et al., Deformation and failure behavior of a hydrostatically extruded Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass/porous tungsten phase composite under dynamic compression. Composites Science and Technology, 2008. 68(15–16): pp.3396-3400.

DOI: 10.1016/j.compscitech.2008.09.026

Google Scholar

[194] Chen, H.S., Plastic flow in metallic glasses under compression. Scripta Metallurgica, 1973. 7(9): pp.931-935.

DOI: 10.1016/0036-9748(73)90143-9

Google Scholar

[195] Flores, K.M. and R.H. Dauskardt, Fracture and deformation of bulk metallic glasses and their composites. Intermetallics, 2004. 12(7–9): pp.1025-1029.

DOI: 10.1016/j.intermet.2004.05.004

Google Scholar

[196] Lowhaphandu, P. and J.J. Lewandowski, Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scripta Materialia, 1998. 38(12): pp.1811-1817.

DOI: 10.1016/s1359-6462(98)00102-x

Google Scholar

[197] Lowhaphandu, P., et al., Deformation and fracture toughness of a bulk amorphous Zr–Ti–Ni–Cu–Be alloy. Intermetallics, 2000. 8(5–6): pp.487-492.

DOI: 10.1016/s0966-9795(99)00137-5

Google Scholar

[198] Conner, R.D., et al., Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scripta Materialia, 1997. 37(9): pp.1373-1378.

DOI: 10.1016/s1359-6462(97)00250-9

Google Scholar

[199] Gilbert, C.J., R.O. Ritchie, and W.L. Johnson, Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Applied Physics Letters, 1997. 71(4): pp.476-478.

DOI: 10.1063/1.119610

Google Scholar

[200] Xu, J., U. Ramamurty, and E. Ma, The fracture toughness of bulk metallic glasses. JOM, 2010. 62(4): pp.10-18.

DOI: 10.1007/s11837-010-0052-4

Google Scholar

[201] Kimura, H. and T. Masumoto, Fracture toughness of amorphous metals. Scripta Metallurgica, 1975. 9(3): pp.211-221.

DOI: 10.1016/0036-9748(75)90196-9

Google Scholar

[202] Chen, M., Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility. Annual Review of Materials Research, 2008. 38(1): pp.445-469.

DOI: 10.1146/annurev.matsci.38.060407.130226

Google Scholar

[203] Hufnagel, T.C., C.A. Schuh, and M.L. Falk, Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Materialia, 2016. 109: pp.375-393.

DOI: 10.1016/j.actamat.2016.01.049

Google Scholar

[204] Sarac, B. and J. Schroers, Designing tensile ductility in metallic glasses. Nature Communications, 2013. 4: p.2158.

DOI: 10.1038/ncomms3158

Google Scholar

[205] Ritchie, R.O., The conflicts between strength and toughness. Nat Mater, 2011. 10(11): pp.817-822.

Google Scholar

[206] Wada, T., A. Inoue, and A.L. Greer, Enhancement of room-temperature plasticity in a bulk metallic glass by finely dispersed porosity. Applied Physics Letters, 2005. 86(25): p.251907.

DOI: 10.1063/1.1953884

Google Scholar

[207] Donovan, P.E. and W.M. Stobbs, Shear band interactions with crystals in partially crystallised metallic glasses. Journal of Non-Crystalline Solids, 1983. 55(1): pp.61-76.

DOI: 10.1016/0022-3093(83)90007-8

Google Scholar

[208] Leng, Y. and T.H. Courtney, Multiple shear band formation in metallic glasses in composites. Journal of Materials Science, 1991. 26(3): pp.588-592.

DOI: 10.1007/bf00588291

Google Scholar

[209] Liu, L.F., et al., Behavior of multiple shear bands in Zr-based bulk metallic glass. Materials Chemistry and Physics, 2005. 93(1): pp.174-177.

DOI: 10.1016/j.matchemphys.2005.03.011

Google Scholar

[210] Huang, R., et al., Inhomogeneous deformation in metallic glasses. Journal of the Mechanics and Physics of Solids, 2002. 50(5): pp.1011-1027.

Google Scholar

[211] Spaepen, F., A microscopic mechanism for steady state inhomogeneous flow in metallic.

Google Scholar

[212] Steif, P.S., F. Spaepen, and J.W. Hutchinson, Strain localization in amorphous metals. Acta Metallurgica, 1982. 30(2): pp.447-455.

DOI: 10.1016/0001-6160(82)90225-5

Google Scholar

[213] Flores, K.M., Structural changes and stress state effects during inhomogeneous flow of metallic glasses. Scripta Materialia, 2006. 54(3): pp.327-332.

DOI: 10.1016/j.scriptamat.2005.04.049

Google Scholar

[214] Donovan, P.E. and W.M. Stobbs, The structure of shear bands in metallic glasses. Acta Metallurgica, 1981. 29(8): pp.1419-1436.

DOI: 10.1016/0001-6160(81)90177-2

Google Scholar

[215] Li, N., W. Chen, and L. Liu, Thermoplastic Micro-Forming of Bulk Metallic Glasses: A Review. JOM, 2016. 68(4): pp.1246-1261.

DOI: 10.1007/s11837-016-1844-y

Google Scholar

[216] Sarac, B., et al., Three-Dimensional Shell Fabrication Using Blow Molding of Bulk Metallic Glass. Journal of Microelectromechanical Systems, 2011. 20(1): pp.28-36.

DOI: 10.1109/jmems.2010.2090495

Google Scholar

[217] Schroers, J., The superplastic forming of bulk metallic glasses. JOM, 2005. 57(5): pp.35-39.

DOI: 10.1007/s11837-005-0093-2

Google Scholar

[218] Dandliker, R.B., R.D. Conner, and W.L. Johnson, Melt infiltration casting of bulk metallic-glass matrix composites. Journal of Materials Research, 1998. 13(10): pp.2896-2901.

DOI: 10.1557/jmr.1998.0396

Google Scholar

[219] Jiang, Y. and K. Qiu, Computational micromechanics analysis of toughening mechanisms of particle-reinforced bulk metallic glass composites. Materials & Design (1980-2015), 2015. 65: pp.410-416.

DOI: 10.1016/j.matdes.2014.09.013

Google Scholar

[220] Sun, Y.F., et al., Formation, thermal stability and deformation behavior of graphite-flakes reinforced Cu-based bulk metallic glass matrix composites. Materials Science and Engineering: A, 2006. 435–436: pp.132-138.

DOI: 10.1016/j.msea.2006.07.040

Google Scholar

[221] Conner, R.D., R.B. Dandliker, and W.L. Johnson, Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Materialia, 1998. 46(17): pp.6089-6102.

DOI: 10.1016/s1359-6454(98)00275-4

Google Scholar

[222] Lee, K., et al., Direct observation of microfracture process in metallic-continuous-fiber-reinforced amorphous matrix composites fabricated by liquid pressing process. Materials Science and Engineering: A, 2010. 527(4–5): pp.941-946.

DOI: 10.1016/j.msea.2009.09.065

Google Scholar

[223] Wadhwa, P., J. Heinrich, and R. Busch, Processing of copper fiber-reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites. Scripta Materialia, 2007. 56(1): pp.73-76.

DOI: 10.1016/j.scriptamat.2006.08.053

Google Scholar

[224] Cytron, S.J., A metallic glass-metal matrix composite. Journal of Materials Science Letters, 1982. 1(5): pp.211-213.

Google Scholar

[225] Deng, S.T., et al., Metallic glass fiber-reinforced Zr-based bulk metallic glass. Scripta Materialia, 2011. 64(1): pp.85-88.

DOI: 10.1016/j.scriptamat.2010.09.014

Google Scholar

[226] Wang, Z., et al., Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Scientific Reports, 2016. 6: p.24384.

Google Scholar

[227] Jiang, J.-Z., et al., Low-Density High-Strength Bulk Metallic Glasses and Their Composites: A Review. Advanced Engineering Materials, 2015. 17(6): pp.761-780.

DOI: 10.1002/adem.201400252

Google Scholar

[228] Qiao, J., In-situ Dendrite/Metallic Glass Matrix Composites: A Review. Journal of Materials Science & Technology, 2013. 29(8): pp.685-701.

DOI: 10.1016/j.jmst.2013.05.020

Google Scholar

[229] Freed, R.L. and J.B. Vander Sande, The effects of devitrification on the mechanical properties of Cu46Zr54 metallic glass. Metallurgical Transactions A, 1979. 10(11): pp.1621-1626.

DOI: 10.1007/bf02811693

Google Scholar

[230] Greer, A.L., Y.Q. Cheng, and E. Ma, Shear bands in metallic glasses. Materials Science and Engineering: R: Reports, 2013. 74(4): pp.71-132.

DOI: 10.1016/j.mser.2013.04.001

Google Scholar

[231] Gludovatz, B., et al., Size-dependent fracture toughness of bulk metallic glasses. Acta Materialia, 2014. 70: pp.198-207.

DOI: 10.1016/j.actamat.2014.01.062

Google Scholar

[232] Ogata, S., et al., Atomistic simulation of shear localization in Cu–Zr bulk metallic glass. Intermetallics, 2006. 14(8–9): pp.1033-1037.

DOI: 10.1016/j.intermet.2006.01.022

Google Scholar

[233] Packard, C.E. and C.A. Schuh, Initiation of shear bands near a stress concentration in metallic glass. Acta Materialia, 2007. 55(16): pp.5348-5358.

DOI: 10.1016/j.actamat.2007.05.054

Google Scholar

[234] Pampillo, C.A., Localized shear deformation in a glassy metal. Scripta Metallurgica, 1972. 6(10): pp.915-917.

DOI: 10.1016/0036-9748(72)90144-5

Google Scholar

[235] Zhou, M., A.J. Rosakis, and G. Ravichandran, On the growth of shear bands and failure-mode transition in prenotched plates: A comparison of singly and doubly notched specimens. International Journal of Plasticity, 1998. 14(4): pp.435-451.

DOI: 10.1016/s0749-6419(98)00003-5

Google Scholar

[236] Pan, D., et al., Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proceedings of the National Academy of Sciences, 2008. 105(39): pp.14769-14772.

DOI: 10.1073/pnas.0806051105

Google Scholar

[237] Das, J., et al., ``Work-Hardenable'' Ductile Bulk Metallic Glass. Physical Review Letters, 2005. 94(20): p.205501.

Google Scholar

[238] Schroers, J. and W.L. Johnson, Ductile Bulk Metallic Glass. Physical Review Letters, 2004. 93(25): p.255506.

DOI: 10.1103/physrevlett.93.255506

Google Scholar

[239] Jiang, W.H., et al., Ductility of a Zr-based bulk-metallic glass with different specimen's geometries. Materials Letters, 2006. 60(29–30): pp.3537-3540.

DOI: 10.1016/j.matlet.2006.03.047

Google Scholar

[240] Das, J., et al., Plasticity in bulk metallic glasses investigated via the strain distribution. Physical Review B, 2007. 76(9): p.092203.

Google Scholar

[241] Chen, L.Y., et al., New Class of Plastic Bulk Metallic Glass. Physical Review Letters, 2008. 100(7): p.075501.

Google Scholar

[242] Abdeljawad, F., M. Fontus, and M. Haataja, Ductility of bulk metallic glass composites: Microstructural effects. Applied Physics Letters, 2011. 98(3): p.031909.

DOI: 10.1063/1.3531660

Google Scholar

[243] Magagnosc, D.J., et al., Tunable Tensile Ductility in Metallic Glasses. Scientific Reports, 2013. 3: p.1096.

Google Scholar

[244] Lu, X.L., et al., Gradient Confinement Induced Uniform Tensile Ductility in Metallic Glass. Scientific Reports, 2013. 3: p.3319.

DOI: 10.1038/srep03319

Google Scholar

[245] Yao, K.F., et al., Superductile bulk metallic glass. Applied Physics Letters, 2006. 88(12): p.122106.

DOI: 10.1063/1.2187516

Google Scholar

[246] Song, K.K., et al., Strategy for pinpointing the formation of B2 CuZr in metastable CuZr-based shape memory alloys. Acta Materialia, 2011. 59(17): pp.6620-6630.

DOI: 10.1016/j.actamat.2011.07.017

Google Scholar

[247] Ding, J., et al., Large-sized CuZr-based Bulk Metallic Glass Composite with Enhanced Mechanical Properties. Journal of Materials Science & Technology, 2014. 30(6): pp.590-594.

DOI: 10.1016/j.jmst.2014.01.014

Google Scholar

[248] Jiang, F., et al., Microstructure evolution and mechanical properties of Cu46Zr47Al7 bulk metallic glass composite containing CuZr crystallizing phases. Materials Science and Engineering: A, 2007. 467(1–2): pp.139-145.

DOI: 10.1016/j.msea.2007.02.093

Google Scholar

[249] Liu, J., et al., Microstructure and Compressive Properties of <I>In-Situ</I> Martensite CuZr Phase Reinforced ZrCuNiAl Metallic Glass Matrix Composite. MATERIALS TRANSACTIONS, 2010. 51(5): pp.1033-1037.

DOI: 10.2320/matertrans.m2010031

Google Scholar

[250] Liu, Z., et al., Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites. Acta Materialia, 2012. 60(6–7): pp.3128-3139.

DOI: 10.1016/j.actamat.2012.02.017

Google Scholar

[251] Liu, Z.Q., et al., Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites. Scientific Reports, 2014. 4: p.4167.

DOI: 10.1038/srep04167

Google Scholar

[252] Schryvers, D., et al., Unit cell determination in CuZr martensite by electron microscopy and X-ray diffraction. Scripta Materialia, 1997. 36(10): pp.1119-1125.

DOI: 10.1016/s1359-6462(97)00003-1

Google Scholar

[253] Seo, J.W. and D. Schryvers, TEM investigation of the microstructure and defects of CuZr martensite. Part I: Morphology and twin systems. Acta Materialia, 1998. 46(4): pp.1165-1175.

DOI: 10.1016/s1359-6454(97)00333-9

Google Scholar

[254] Seo, J.W. and D. Schryvers, TEM investigation of the microstructure and defects of CuZr martensite. Part II: Planar defects. Acta Materialia, 1998. 46(4): pp.1177-1183.

DOI: 10.1016/s1359-6454(97)00334-0

Google Scholar

[255] Song, K., Synthesis, microstructure, and deformation mechanisms of CuZr-based bulk metallic glass composites. (2013).

Google Scholar

[256] Song, K.K., et al., Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites. AIP Advances, 2013. 3(1): p.012116.

DOI: 10.1063/1.4789516

Google Scholar

[257] Kim, D.H., et al., Phase separation in metallic glasses. Progress in Materials Science, 2013. 58(8): pp.1103-1172.

Google Scholar

[258] Sun, L., et al., Phase Separation and Microstructure Evolution of Zr48Cu36Ag8Al8 Bulk Metallic Glass in the Supercooled Liquid Region. Rare Metal Materials and Engineering, 2016. 45(3): pp.567-570.

DOI: 10.1016/s1875-5372(16)30073-x

Google Scholar

[259] Antonowicz, J., et al., Early stages of phase separation and nanocrystallization in Al-rare earth metallic glasses studied using SAXS/WAXS and HRTEM methods. Reviews on Advanced Materials Science, 2008. 18(5): pp.454-458.

Google Scholar

[260] Park, B.J., et al., Phase Separating Bulk Metallic Glass: A Hierarchical Composite. Physical Review Letters, 2006. 96(24): p.245503.

Google Scholar

[261] Kelton, K.F., A new model for nucleation in bulk metallic glasses. Philosophical Magazine Letters, 1998. 77(6): pp.337-344.

DOI: 10.1080/095008398178318

Google Scholar

[262] Chang, H.J., et al., Synthesis of metallic glass composites using phase separation phenomena. Acta Materialia, 2010. 58(7): pp.2483-2491.

DOI: 10.1016/j.actamat.2009.12.034

Google Scholar

[263] Kündig, A.A., et al., In situ formed two-phase metallic glass with surface fractal microstructure. Acta Materialia, 2004. 52(8): pp.2441-2448.

DOI: 10.1016/j.actamat.2004.01.036

Google Scholar

[264] Oh, J.C., et al., Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Materialia, 2005. 53(2): pp.165-169.

DOI: 10.1016/j.scriptamat.2005.03.046

Google Scholar

[265] Park, E.S. and D.H. Kim, Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Materialia, 2006. 54(10): pp.2597-2604.

DOI: 10.1016/j.actamat.2005.12.020

Google Scholar

[266] Guo, G.-Q., et al., How Can Synchrotron Radiation Techniques Be Applied for Detecting Microstructures in Amorphous Alloys? Metals, 2015. 5(4): p. (2048).

DOI: 10.3390/met5042048

Google Scholar

[267] Guo, G.-Q., et al., Detecting Structural Features in Metallic Glass via Synchrotron Radiation Experiments Combined with Simulations. Metals, 2015. 5(4): p. (2093).

DOI: 10.3390/met5042093

Google Scholar

[268] Michalik, S., et al., Structural modifications of swift-ion-bombarded metallic glasses studied by high-energy X-ray synchrotron radiation. Acta Materialia, 2014. 80: pp.309-316.

DOI: 10.1016/j.actamat.2014.07.072

Google Scholar

[269] Mu, J., et al., In situ high-energy X-ray diffraction studies of deformation-induced phase transformation in Ti-based amorphous alloy composites containing ductile dendrites. Acta Materialia, 2013. 61(13): pp.5008-5017.

DOI: 10.1016/j.actamat.2013.04.045

Google Scholar

[270] Paradis, P.-F., et al., Materials properties measurements and particle beam interactions studies using electrostatic levitation. Materials Science and Engineering: R: Reports, 2014. 76: pp.1-53.

DOI: 10.1016/j.mser.2013.12.001

Google Scholar

[271] Huang, Y.J., J. Shen, and J.F. Sun, Bulk metallic glasses: Smaller is softer. Applied Physics Letters, 2007. 90(8): p.081919.

DOI: 10.1063/1.2696502

Google Scholar

[272] Oh, Y.S., et al., Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites. Acta Materialia, 2011. 59(19): pp.7277-7286.

DOI: 10.1016/j.actamat.2011.08.006

Google Scholar

[273] Kim, K.B., et al., Heterogeneous distribution of shear strains in deformed Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite. physica status solidi (a), 2005. 202(13): pp.2405-2412.

DOI: 10.1002/pssa.200520073

Google Scholar

[274] He, G., et al., Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat Mater, 2003. 2(1): pp.33-37.

DOI: 10.1038/nmat792

Google Scholar

[275] Wang, Y., et al., Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite. Progress in Natural Science: Materials International, 2014. 24(2): pp.121-127.

DOI: 10.1016/j.pnsc.2014.03.010

Google Scholar

[276] Zhang, T., et al., Dendrite size dependence of tensile plasticity of in situ Ti-based metallic glass matrix composites. Journal of Alloys and Compounds, 2014. 583: pp.593-597.

DOI: 10.1016/j.jallcom.2013.08.201

Google Scholar

[277] Gargarella, P., et al., Ti–Cu–Ni shape memory bulk metallic glass composites. Acta Materialia, 2013. 61(1): pp.151-162.

DOI: 10.1016/j.actamat.2012.09.042

Google Scholar

[278] Hofmann, D.C., et al., New processing possibilities for highly toughened metallic glass matrix composites with tensile ductility. Scripta Materialia, 2008. 59(7): pp.684-687.

DOI: 10.1016/j.scriptamat.2008.05.046

Google Scholar

[279] Chu, J.P., Annealing-induced amorphization in a glass-forming thin film. JOM, 2009. 61(1): pp.72-75.

DOI: 10.1007/s11837-009-0014-x

Google Scholar

[280] Choi-Yim, H., et al., Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites. Scripta Materialia, 2001. 45(9): pp.1039-1045.

DOI: 10.1016/s1359-6462(01)01134-4

Google Scholar

[281] Hui, X., et al., Wetting angle and infiltration velocity of Zr base bulk metallic glass composite. Intermetallics, 2006. 14(8–9): pp.931-935.

DOI: 10.1016/j.intermet.2006.01.037

Google Scholar

[282] Xue, Y.F., et al., Strength-improved Zr-based metallic glass/porous tungsten phase composite by hydrostatic extrusion. Applied Physics Letters, 2007. 90(8): p.081901.

DOI: 10.1063/1.2456618

Google Scholar

[283] Hou, B., et al., Dynamic and quasi-static mechanical properties of fibre-reinforced metallic glass at different temperatures. Philosophical Magazine Letters, 2007. 87(8): pp.595-601.

DOI: 10.1080/09500830701405553

Google Scholar

[284] Zhang, Y. and A.L. Greer, Correlations for predicting plasticity or brittleness of metallic glasses. Journal of Alloys and Compounds, 2007. 434–435: pp.2-5.

DOI: 10.1016/j.jallcom.2006.08.094

Google Scholar

[285] Fu, X.L., Y. Li, and C.A. Schuh, Temperature, strain rate and reinforcement volume fraction dependence of plastic deformation in metallic glass matrix composites. Acta Materialia, 2007. 55(9): pp.3059-3071.

DOI: 10.1016/j.actamat.2007.01.009

Google Scholar

[286] Chen, Y., et al., Preparation, microstructure and deformation behavior of Zr-based metallic glass/porous SiC interpenetrating phase composites. Materials Science and Engineering: A, 2011. 530: pp.15-20.

DOI: 10.1016/j.msea.2011.08.063

Google Scholar

[287] Chen, C., et al., Effect of Temperature on the Dynamic Mechanical Behaviors of Zr-Based Metallic Glass Reinforced Porous Tungsten Matrix Composite. Advanced Engineering Materials, 2012. 14(7): pp.439-444.

DOI: 10.1002/adem.201100352

Google Scholar

[288] Liu, T., et al., Microstructures and Mechanical Properties of ZrC Reinforced (Zr-Ti)-Al-Ni-Cu Glassy Composites by an In Situ Reaction. Advanced Engineering Materials, 2009. 11(5): pp.392-398.

DOI: 10.1002/adem.200800359

Google Scholar

[289] Zhang, H.F., et al., Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite. Intermetallics, 2009. 17(12): pp.1070-1077.

DOI: 10.1016/j.intermet.2009.05.011

Google Scholar

[290] Khademian, N. and R. Gholamipour, Fabrication and mechanical properties of a tungsten wire reinforced Cu–Zr–Al bulk metallic glass composite. Materials Science and Engineering: A, 2010. 527(13–14): pp.3079-3084.

DOI: 10.1016/j.msea.2010.01.086

Google Scholar

[291] Choi-Yim, H. and W.L. Johnson, Bulk metallic glass matrix composites. Applied Physics Letters, 1997. 71(26): pp.3808-3810.

DOI: 10.1063/1.120512

Google Scholar

[292] Hays, C.C., C.P. Kim, and W.L. Johnson, Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Materials Science and Engineering: A, 2001. 304–306: pp.650-655.

DOI: 10.1016/s0921-5093(00)01557-4

Google Scholar

[293] Löser, W., et al., Effect of casting conditions on dendrite-amorphous/nanocrystalline Zr–Nb–Cu–Ni–Al in situ composites. Intermetallics, 2004. 12(10–11): pp.1153-1158.

DOI: 10.1016/j.intermet.2004.04.017

Google Scholar

[294] Liu, Z., et al., Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment. AIP Advances, 2012. 2(3): p.032176.

DOI: 10.1063/1.4754853

Google Scholar

[295] Eckert, J., et al., Structural bulk metallic glasses with different length-scale of constituent phases. Intermetallics, 2002. 10(11–12): pp.1183-1190.

DOI: 10.1016/s0966-9795(02)00133-4

Google Scholar

[296] Das, J., et al., Designing bulk metallic glass and glass matrix composites in martensitic alloys. Journal of Alloys and Compounds, 2009. 483(1–2): pp.97-101.

DOI: 10.1016/j.jallcom.2008.08.139

Google Scholar

[297] Wu, D., et al., Deformation-Induced Martensitic Transformation in Cu-Zr-Zn Bulk Metallic Glass Composites. Metals, 2015. 5(4): p.2134.

DOI: 10.3390/met5042134

Google Scholar

[298] Pauly, S., et al., Deformation-induced martensitic transformation in Cu–Zr–(Al,Ti) bulk metallic glass composites. Scripta Materialia, 2009. 60(6): pp.431-434.

DOI: 10.1016/j.scriptamat.2008.11.015

Google Scholar

[299] Javid, F.A., et al., Martensitic transformation and thermal cycling effect in Cu–Co–Zr alloys. Journal of Alloys and Compounds, 2011. 509, Supplement 1: p. S334-S337.

DOI: 10.1016/j.jallcom.2011.01.186

Google Scholar

[300] Antonaglia, J., et al., Bulk Metallic Glasses Deform via Slip Avalanches. Physical Review Letters, 2014. 112(15): p.155501.

DOI: 10.1103/physrevlett.112.155501

Google Scholar

[301] Hufnagel, T.C., et al., Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics, 2002. 10(11–12): pp.1163-1166.

DOI: 10.1016/s0966-9795(02)00157-7

Google Scholar

[302] Hufnagel, T.C., Preface to the viewpoint set on mechanical behavior of metallic glasses. Scripta Materialia, 2006. 54(3): pp.317-319.

DOI: 10.1016/j.scriptamat.2005.10.004

Google Scholar

[303] Hufnagel, T.C., U.K. Vempati, and J.D. Almer, Crack-Tip Strain Field Mapping and the Toughness of Metallic Glasses. PLoS ONE, 2013. 8(12): p. e83289.

DOI: 10.1371/journal.pone.0083289

Google Scholar

[304] Porter, D.A. and K.E. Easterling, Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint). 1992: Taylor & Francis.

Google Scholar

[305] Bracchi, A., et al., Decomposition and metastable phase formation in the bulk metallic glass matrix composite Zr56Ti14Nb5Cu7Ni6Be12. Journal of Applied Physics, 2006. 99(12): p.123519.

DOI: 10.1063/1.2207496

Google Scholar

[306] Park, E.S., J.S. Kyeong, and D.H. Kim, Phase separation and improved plasticity by modulated heterogeneity in Cu–(Zr, Hf)–(Gd, Y)–Al metallic glasses. Scripta Materialia, 2007. 57(1): pp.49-52.

DOI: 10.1016/j.scriptamat.2007.03.008

Google Scholar

[307] Van De Moortèle, B., et al., Phase separation before crystallization in Zr-Ti-Cu-Ni-Be bulk metallic glasses: Influence of the chemical composition. Journal of Non-Crystalline Solids, 2004. 345-346: pp.169-172.

DOI: 10.1016/j.jnoncrysol.2004.08.246

Google Scholar

[308] Inoue, A. and T. Zhang, Fabrication of Bulky Zr-Based Glassy Alloys by Suction Casting into Copper Mold. Materials Transactions, JIM, 1995. 36(9): pp.1184-1187.

DOI: 10.2320/matertrans1989.36.1184

Google Scholar

[309] Inoue, A. and T. Zhang, Fabrication of Bulk Glassy Zr<SUB>55</SUB>Al<SUB>10</SUB>Ni<SUB>5</SUB>Cu<SUB>30</SUB> Alloy of 30 mm in Diameter by a Suction Casting Method. Materials Transactions, JIM, 1996. 37(2): pp.185-187.

DOI: 10.2320/matertrans1989.37.185

Google Scholar

[310] Lou, H.B., et al., 73 mm-diameter bulk metallic glass rod by copper mould casting. Applied Physics Letters, 2011. 99(5): p.051910.

DOI: 10.1063/1.3621862

Google Scholar

[311] Qiao, J.W., et al., Synthesis of plastic Zr-based bulk metallic glass matrix composites by the copper-mould suction casting and the Bridgman solidification. Journal of Alloys and Compounds, 2009. 477(1–2): pp.436-439.

DOI: 10.1016/j.jallcom.2008.10.020

Google Scholar

[312] Wall, J.J., et al., A combined drop/suction-casting machine for the manufacture of bulk-metallic-glass materials. Review of Scientific Instruments, 2006. 77(3): p.033902.

DOI: 10.1063/1.2179415

Google Scholar

[313] Figueroa, I., et al., Preparation of Cu-based bulk metallic glasses by suction casting. (2007).

Google Scholar

[314] Inoue, A., et al., Production methods and properties of engineering glassy alloys and composites. Intermetallics, 2015. 58: pp.20-30.

DOI: 10.1016/j.intermet.2014.11.001

Google Scholar

[315] Wang, B., et al., Simulation of solidification microstructure in twin-roll casting strip. Computational Materials Science, 2010. 49(1, Supplement): p. S135-S139.

DOI: 10.1016/j.commatsci.2010.01.051

Google Scholar

[316] Hofmann, D.C., et al., Semi-solid induction forging of metallic glass matrix composites. JOM, 2009. 61(12): pp.11-17.

DOI: 10.1007/s11837-009-0172-x

Google Scholar

[317] Khalifa, H.E., Bulk metallic glasses and their composites : composition optimization, thermal stability, and microstructural tunability. (2009).

Google Scholar

[318] Chen, B., et al., Improvement in mechanical properties of a Zr-based bulk metallic glass by laser surface treatment. Journal of Alloys and Compounds, 2010. 504, Supplement 1: p. S45-S47.

DOI: 10.1016/j.jallcom.2010.04.053

Google Scholar

[319] Santos, E.C., et al., Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture, 2006. 46(12–13): pp.1459-1468.

DOI: 10.1016/j.ijmachtools.2005.09.005

Google Scholar

[320] Sun, H. and K.M. Flores, Laser deposition of a Cu-based metallic glass powder on a Zr-based glass substrate. Journal of Materials Research, 2008. 23(10): pp.2692-2703.

DOI: 10.1557/jmr.2008.0329

Google Scholar

[321] Sun, H. and K. Flores, Microstructural analysis of a laser-processed Zr-based bulk metallic glass. Metallurgical and Materials Transactions A, 2010. 41(7): pp.1752-1757.

DOI: 10.1007/s11661-009-0151-4

Google Scholar

[322] Sun, H. and K.M. Flores, Spherulitic crystallization mechanism of a Zr-based bulk metallic glass during laser processing. Intermetallics, 2013. 43: pp.53-59.

DOI: 10.1016/j.intermet.2013.06.010

Google Scholar

[323] Welk, B.A., et al., Phase Selection in a Laser Surface Melted Zr-Cu-Ni-Al-Nb Alloy. Metallurgical and Materials Transactions B, 2014. 45(2): pp.547-554.

DOI: 10.1007/s11663-013-9907-8

Google Scholar

[324] Welk, B.A., M.A. Gibson, and H.L. Fraser, A Combinatorial Approach to the Investigation of Metal Systems that Form Both Bulk Metallic Glasses and High Entropy Alloys. JOM, 2016. 68(3): pp.1021-1026.

DOI: 10.1007/s11837-015-1779-8

Google Scholar

[325] Borkar, T., et al., A combinatorial assessment of AlxCrCuFeNi2 (0 &lt; x &lt; 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Materialia, 2016. 116: pp.63-76.

DOI: 10.1016/j.actamat.2016.06.025

Google Scholar

[326] Li, X.P., et al., The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting. Materials & Design, 2014. 63: pp.407-411.

DOI: 10.1016/j.matdes.2014.06.022

Google Scholar

[327] Li, X.P., et al., Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties. Materials Science and Engineering: A, 2014. 606: pp.370-379.

DOI: 10.1016/j.msea.2014.03.097

Google Scholar

[328] Li, X.P., et al., Effect of substrate temperature on the interface bond between support and substrate during selective laser melting of Al–Ni–Y–Co–La metallic glass. Materials & Design (1980-2015), 2015. 65: pp.1-6.

DOI: 10.1016/j.matdes.2014.08.065

Google Scholar

[329] Prashanth, K.G., et al., Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Additive Manufacturing, 2015. 6: pp.1-5.

DOI: 10.1016/j.addma.2015.01.001

Google Scholar

[330] Jung, H.Y., et al., Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study. Materials & Design, 2015. 86: pp.703-708.

DOI: 10.1016/j.matdes.2015.07.145

Google Scholar

[331] Thompson, S.M., et al., An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Additive Manufacturing, 2015. 8: pp.36-62.

DOI: 10.1016/j.addma.2015.07.001

Google Scholar

[332] Shamsaei, N., et al., An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Additive Manufacturing, 2015. 8: pp.12-35.

DOI: 10.1016/j.addma.2015.07.002

Google Scholar

[333] Sun, Y.F., et al., Effect of Nb content on the microstructure and mechanical properties of Zr–Cu–Ni–Al–Nb glass forming alloys. Journal of Alloys and Compounds, 2005. 403(1–2): pp.239-244.

DOI: 10.1016/j.jallcom.2005.06.006

Google Scholar

[334] Kühn, U., et al., Microstructure and mechanical properties of slowly cooled Zr–Nb–Cu–Ni–Al composites with ductile bcc phase. Materials Science and Engineering: A, 2004. 375–377: pp.322-326.

DOI: 10.1016/j.msea.2003.10.086

Google Scholar

[335] Sun, Y.F., et al., Brittleness of Zr-based bulk metallic glass matrix composites containing ductile dendritic phase. Materials Science and Engineering: A, 2005. 406(1–2): pp.57-62.

DOI: 10.1016/j.msea.2005.06.050

Google Scholar

[336] Sun, Y.F., et al., Effect of quasicrystalline phase on the deformation behavior of Zr62Al9.5Ni9.5Cu14Nb5 bulk metallic glass. Materials Science and Engineering: A, 2005. 398(1–2): pp.22-27.

DOI: 10.1016/j.msea.2005.01.040

Google Scholar

[337] Kühn, U., et al., ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Applied Physics Letters, 2002. 80(14): pp.2478-2480.

DOI: 10.1063/1.1467707

Google Scholar

[338] Firstov, G.S., J. Van Humbeeck, and Y.N. Koval, High-temperature shape memory alloys: Some recent developments. Materials Science and Engineering: A, 2004. 378(1–2): pp.2-10.

DOI: 10.1016/j.msea.2003.10.324

Google Scholar

[339] Nishida, M., et al., New deformation twinning mode of B19' martensite in Ti-Ni shape memory alloy. Scripta Materialia, 1998. 39(12): pp.1749-1754.

DOI: 10.1016/s1359-6462(98)00366-2

Google Scholar

[340] Schryvers, D., et al., Applications of advanced transmission electron microscopic techniques to Ni–Ti based shape memory materials. Materials Science and Engineering: A, 2004. 378(1–2): pp.11-15.

DOI: 10.1016/j.msea.2003.10.325

Google Scholar

[341] Lee, J.-C., et al., Strain hardening of an amorphous matrix composite due to deformation- induced nanocrystallization during quasistatic compression. Applied Physics Letters, 2004. 84(15): pp.2781-2783.

DOI: 10.1063/1.1697631

Google Scholar

[342] Shi, Y. and M.L. Falk, Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Materialia, 2007. 55(13): pp.4317-4324.

DOI: 10.1016/j.actamat.2007.03.029

Google Scholar

[343] Louzguine-Luzgin, D.V., et al., High-strength and ductile glassy-crystal Ni–Cu–Zr–Ti composite exhibiting stress-induced martensitic transformation. Philosophical Magazine, 2009. 89(32): pp.2887-2901.

DOI: 10.1080/14786430903128577

Google Scholar

[344] Hao, S., et al., A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength. Science, 2013. 339(6124): pp.1191-1194.

Google Scholar

[345] Yang, Y. and C.T. Liu, Size effect on stability of shear-band propagation in bulk metallic glasses: an overview. Journal of Materials Science, 2012. 47(1): pp.55-67.

DOI: 10.1007/s10853-011-5915-8

Google Scholar

[346] Jiang, W.H. and M. Atzmon, Mechanically-assisted nanocrystallization and defects in amorphous alloys: A high-resolution transmission electron microscopy study. Scripta Materialia, 2006. 54(3): pp.333-336.

DOI: 10.1016/j.scriptamat.2005.09.052

Google Scholar

[347] Dodd, B. and Y. Bai, Adiabatic Shear Localization: Frontiers and Advances. 2012: Elsevier.

Google Scholar

[348] Jiang, W.H., F.E. Pinkerton, and M. Atzmon, Deformation-induced nanocrystallization: A comparison of two amorphous Al-based alloys. Journal of Materials Research, 2005. 20(03): pp.696-702.

DOI: 10.1557/jmr.2005.0090

Google Scholar

[349] Akihisa, I., et al., Aluminum-Based Amorphous Alloys with Tensile Strength above 980 MPa (100 kg/mm 2 ). Japanese Journal of Applied Physics, 1988. 27(4A): p. L479.

DOI: 10.1143/jjap.27.l479

Google Scholar

[350] Inoue, A., Bulk amorphous and nanocrystalline alloys with high functional properties. Materials Science and Engineering: A, 2001. 304–306: pp.1-10.

DOI: 10.1016/s0921-5093(00)01551-3

Google Scholar

[351] Qian, M., Metal Powder for Additive Manufacturing. JOM, 2015. 67(3): pp.536-537.

DOI: 10.1007/s11837-015-1321-z

Google Scholar

[352] Kruth, J.P., et al., Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004. 149(1–3): pp.616-622.

DOI: 10.1016/j.jmatprotec.2003.11.051

Google Scholar

[353] Dutta, B. and F.H. Froes, Chapter 1 - The Additive Manufacturing of Titanium Alloys, in Additive Manufacturing of Titanium Alloys. 2016, Butterworth-Heinemann. pp.1-10.

DOI: 10.1016/b978-0-12-804782-8.00001-x

Google Scholar

[354] Gibson, I., W.D. Rosen, and B. Stucker, Medical Applications for Additive Manufacture, in Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. 2010, Springer US: Boston, MA. pp.400-414.

DOI: 10.1007/978-1-4419-1120-9_15

Google Scholar

[355] Kelly, P.M. and M.-X. Zhang, Edge-to-edge matching—The fundamentals. Metallurgical and Materials Transactions A, 2006. 37(3): pp.833-839.

DOI: 10.1007/s11661-006-0056-4

Google Scholar

[356] Kelly, P. and M.-X. Zhang. Edge-to-edge matching-a new approach to the morphology and crystallography of precipitates. in Materials Forum. (1999).

Google Scholar

[357] Zhang, M.X. and P.M. Kelly, Edge-to-edge matching and its applications: Part I. Application to the simple HCP/BCC system. Acta Materialia, 2005. 53(4): pp.1073-1084.

DOI: 10.1016/j.actamat.2004.11.007

Google Scholar

[358] Zhang, M.X. and P.M. Kelly, Edge-to-edge matching model for predicting orientation relationships and habit planes—the improvements. Scripta Materialia, 2005. 52(10): pp.963-968.

DOI: 10.1016/j.scriptamat.2005.01.040

Google Scholar

[359] Smugeresky, J., et al., Laser engineered net shaping(LENS) process: optimization of surface finish and microstructural properties. Advances in Powder Metallurgy and Particulate Materials--1997., 1997. 3: p.21.

DOI: 10.2172/554828

Google Scholar

[360] Wang, H.-S., H.-G. Chen, and J.S.-C. Jang, Microstructure evolution in Nd:YAG laser-welded (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass alloy. Journal of Alloys and Compounds, 2010. 495(1): pp.224-228.

DOI: 10.1016/j.jallcom.2010.01.132

Google Scholar

[361] Vandenbroucke, B. and J.P. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal, 2007. 13(4): pp.196-203.

DOI: 10.1108/13552540710776142

Google Scholar

[362] Cunliffe, A., et al., Glass formation in a high entropy alloy system by design. Intermetallics, 2012. 23: pp.204-207.

DOI: 10.1016/j.intermet.2011.12.006

Google Scholar

[363] Balla, V.K. and A. Bandyopadhyay, Laser processing of Fe-based bulk amorphous alloy. Surface and Coatings Technology, 2010. 205(7): pp.2661-2667.

DOI: 10.1016/j.surfcoat.2010.10.029

Google Scholar

[364] Basu, A., et al., Laser surface coating of Fe-Cr-Mo-Y-B-C bulk metallic glass composition on AISI 4140 steel. Surface and Coatings Technology, 2008. 202(12): pp.2623-2631.

DOI: 10.1016/j.surfcoat.2007.09.028

Google Scholar

[365] Matthews, D.T.A., et al., Laser engineered surfaces from glass forming alloy powder precursors: Microstructure and wear. Surface and Coatings Technology, 2009. 203(13): pp.1833-1843.

DOI: 10.1016/j.surfcoat.2009.01.015

Google Scholar

[366] Zhang, L.C., et al., Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Materialia, 2011. 65(1): pp.21-24.

DOI: 10.1016/j.scriptamat.2011.03.024

Google Scholar

[367] Yan, M., et al., The influence of topological structure on bulk glass formation in Al-based metallic glasses. Scripta Materialia, 2011. 65(9): pp.755-758.

DOI: 10.1016/j.scriptamat.2011.07.009

Google Scholar

[368] Mu, J., et al., Synthesis and Properties of Al-Ni-La Bulk Metallic Glass. Advanced Engineering Materials, 2009. 11(7): pp.530-532.

DOI: 10.1002/adem.200900100

Google Scholar

[369] Yang, B.J., et al., Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scripta Materialia, 2009. 61(4): pp.423-426.

DOI: 10.1016/j.scriptamat.2009.04.035

Google Scholar

[370] Yang, B.J., et al., Developing aluminum-based bulk metallic glasses. Philosophical Magazine, 2010. 90(23): pp.3215-3231.

DOI: 10.1080/14786435.2010.484401

Google Scholar

[371] Balla, V.K., et al., Laser-assisted Zr/ZrO2 coating on Ti for load-bearing implants. Acta Biomaterialia, 2009. 5(7): pp.2800-2809.

DOI: 10.1016/j.actbio.2009.03.032

Google Scholar

[372] Balla, V.K., et al., Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomaterialia, 2010. 6(6): pp.2329-2334.

DOI: 10.1016/j.actbio.2009.11.021

Google Scholar

[373] Wang, X., et al., Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 2016. 83: pp.127-141.

DOI: 10.1016/j.biomaterials.2016.01.012

Google Scholar

[374] Christian, J.W., CHAPTER 10 - The Classical Theory of Nucleation, in The Theory of Transformations in Metals and Alloys. 2002, Pergamon: Oxford. pp.422-479.

DOI: 10.1016/b978-008044019-4/50014-3

Google Scholar

[375] Inoue, A., Bulk Glassy Alloys: Historical Development and Current Research. Engineering, 2015. 1(2): pp.185-191.

DOI: 10.15302/j-eng-2015038

Google Scholar

[376] Inoue, A., T. Zhang, and E. Makabe, Production methods of metallic glasses by a suction casting method. 1998, Google Patents.

Google Scholar

[377] Greer, A.L., Liquid metals: Supercool order. Nat Mater, 2006. 5(1): pp.13-14.

Google Scholar

[378] Liu, X.J., et al., Metallic Liquids and Glasses: Atomic Order and Global Packing. Physical Review Letters, 2010. 105(15): p.155501.

Google Scholar

[379] Wang, W.H., Metallic glasses: Family traits. Nat Mater, 2012. 11(4): pp.275-276.

Google Scholar

[380] Kumar, G., A. Desai, and J. Schroers, Bulk Metallic Glass: The Smaller the Better. Advanced Materials, 2011. 23(4): pp.461-476.

DOI: 10.1002/adma.201002148

Google Scholar

[381] Browne, D.J., Z. Kovacs, and W.U. Mirihanage, Comparison of nucleation and growth mechanisms in alloy solidification to those in metallic glass crystallisation — relevance to modeling. Transactions of the Indian Institute of Metals, 2009. 62(4): pp.409-412.

DOI: 10.1007/s12666-009-0055-4

Google Scholar

[382] James, P.F., Liquid-phase separation in glass-forming systems. Journal of Materials Science, 1975. 10(10): pp.1802-1825.

DOI: 10.1007/bf00554944

Google Scholar