Photodegradation of an Herbicide (2-methyl-4-chlorophenoxyacetic acid) in the Presence of “TiO2, SnO2, SnO2/TiO2 Nanoparticles – Polypropylene Fibrous Carrier” Systems

Article Preview

Abstract:

Using electronic spectroscopy and fluorescence techniques, the degradation of 2-methyl-4-chlorophenoxyacetic acid has been researched in water under the excitation with UV radiation produced by a KrCl excimer lamp in the presence of “TiO2, SnO2, SnO2/TiO2 Nanoparticles – Polypropylene Fibrous Carrier” Systems. It has been determined that MCPA phototransformation is most efficient when using the “TiO2/SnO2 heteronanoparticles – carrier” system with the concentration of 25/6 mg/g. The results indicate that systems with applied semiconductor particles do not exhibit sorption properties towards МСРА molecules. Therefore, the change in the spectral characteristics of a МСРА water solution after time-exposure and exposure to radiation is only associated with the phototransformations of non-adsorbed МСРА molecules and with the emergence of their photodegradation products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

February 2015

Export:

Price:

* - Corresponding Author

[1] O'Dwyer, T.F. 2006. Water Pollution VIII: Modelling, Monitoring and Management, C.A. Brebbia and J.S. Antunes do Carmo (eds), WIT Press, Southampton, UK, Section 9, Wastewater Treatment, pp.489-498.

Google Scholar

[2] G. Akçay, K. Yurdakoç, Removal of various phenoxyalkanoic herbicides from water by organo-clays, Acta Hydrochim. Hydrob. 28 (2003) 300-304.

DOI: 10.1002/1521-401x(200012)28:6<300::aid-aheh300>3.0.co;2-l

Google Scholar

[3] M.A. Crespin, M. Gallego, M. Valcarcel, J. L. Gonzalez, Study of the degradation of the herbicides 2, 4-D and MCPA at different depths in contaminated agricultural soil, Environ. Sci. Technol. 35, 21 (2001) 4265-4270.

DOI: 10.1021/es0107226

Google Scholar

[4] S. Chiron, A. Fernandez-Alba, A. Rodriguez, E. Garcia-Calvo, Pesticide chemical oxidation: State-of-the-art", Water Res. 34 (2000) 366-377.

DOI: 10.1016/s0043-1354(99)00173-6

Google Scholar

[5] P. Boule, L. Meunier, F. Bonnemoy, A. Boulkamh, A. Zertal, and B. Lavedrine, Direct phototransformation of aromatic pesticides in aqueous solution, Int. J. Photoenergy, 4, 2 (2002) 69-78.

DOI: 10.1155/s1110662x02000119

Google Scholar

[6] F.J. Benitez, J.L. Acero, F.J. Real, S. Roman, Oxidation of MCPA and 2, 4-D by UV radiation, ozone, and the combinations UV/H2O2 and O3/H2O2, J. Environ. Sci. Health, 39(3) (2004) 393-409.

DOI: 10.1081/pfc-120035925

Google Scholar

[7] O.N. Chaikovskaya, E.A. Karetnikova, I.V. Sokolova, G.V. Mayer, Investigation of the influence of UV radiation on the decomposition of 4-chloro-2-methylphenoxyacetic acid, Russ. Phys. J., Volume 56, 8 (2013) 3-8.

DOI: 10.1007/s11182-013-0109-2

Google Scholar

[8] N.M. Soboleva, A.A. Nosonovich, V.V. Goncharuk, Heterogeneous Photocatalysis in Water Treatment Processes, Khim. Tekhnol. Vody, 29 (2007) 125-153.

Google Scholar

[9] G.V. Lysak, I.A. Lysak, A.V. Shabalina, T.I. Izaak, T.D. Malinovskaya, Study of oxide nanostructure catalysts on polypropylene carrying agents for the removal of organiccontaminants from water, Russ. J. Appl. Chem., 12, 83 (2010) 2193-2195.

DOI: 10.1134/s1070427210120232

Google Scholar

[10] T.D. Malinovskaya, I.A. Lysak, G.V. Lysak, Bactericidal system silver nanoparticles - polypropylene fibrous carrier,: preparation and properties, Nanotechnics. 33 (2013) 69-72.

Google Scholar

[11] M.S. Zhukovsky, I.A. Lysak, G.V. Lysak, S.V. Vazhenin, T.D. Malinovskaya, S.A. Beznosjuk, Formation of silver nanoparticles on polypropylene microfibrous carriers, Russ. Phys. J., Volume 54 (2011) 739-748.

DOI: 10.1007/s11182-011-9678-0

Google Scholar

[12] V.I. Otmakhov, E.V. Petrova, N.V. Varlamova, Yu.V. Anyushkina, Optimization of Conditions of the atomic emission analysis of zirconia and corundum nanoceramics by simulating physicochemical processes in spectrum excitation sources, J. Anal. Chem., 66 (2011).

DOI: 10.1134/s1061934811090139

Google Scholar

[13] J. -M. Bollag, C.S. Helling, M. Alecxander, Metabolism of 4-Chloro-2-Methylphenoxyacetic Acid by Soil Bacteria. Appl. Microbiol., 15, 6 (1967) 1393-1398.

DOI: 10.1128/am.15.6.1393-1398.1967

Google Scholar

[14] E.A. Sosnin, T. Oppenländer, V.F. Tarasenko, Applications of capacitive and barrier discharge excilamps in photoscience, J. Photochem. Photobiol. C: Rev. 7 (2006) 145-163.

DOI: 10.1016/j.jphotochemrev.2006.12.002

Google Scholar

[15] O. Tchaikovskaya, E. Karetnikova, I. Sokolova, G. Mayer, D. Shvornev, The phototransformation of 4-chloro-2-methylphenoxyacetic acid under KrCl and XeBr excilamps irradiation in water, J. Photochem. Photobiol. A: Chem. 228, 1 (2012) 8-14.

DOI: 10.1016/j.jphotochem.2011.11.004

Google Scholar

[16] N.B. Sul'timova, P.P. Levin, O.N. Chaikovskaya, Laser photolysis study of the transient products of 4-carboxybenzophenone-sensitized photolysis of chlorophenoxyacetic acid-based herbicides in aqueous micellar solutions, High Energy Chem. (Khimiya Vysokikh Energii) 44, 5 (2010).

DOI: 10.1134/s0018143910050073

Google Scholar

[17] M. Anpo, M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, J. Catal. 216 (2003) 505-516.

DOI: 10.1016/s0021-9517(02)00104-5

Google Scholar