Fundamental Analysis of the Usability of an Angle-Resolved Scattered Light Sensor for Monitoring Vibratory Finishing Processes Based on Ray Tracing Simulations

Article Preview

Abstract:

The angle-resolved scattered light sensor OS500 (made by Optosurf in Ettlingen, Germany) is an optical measuring device that is becoming more and more frequently used inindustrial applications and for the characterization of surfaces in general as well as for measuringroughness and shape. The angle-resolved measurement principle allows the statistical distributionof the gradients of a surface, resulting from the reflectance of the light at the flank angles of theareas examined, to be measured and consequently enables the geometric surface texture to beevaluated. Thus the topography of surfaces is not measured; instead the gradients are evaluated.Since the scattered light sensor measures angles and not distances, the sensor is immune to out-ofplanevibrations in the direction of measurement. Another distinct characteristic of the scattered light sensor is the high degree of sensor dynamics, which when combined with the statisticalanalysis of the surface angles, allows even the finest changes in the surface structure to be detected. Accordingly, it makes sense to use the sensor to monitor processes in which the surfaces and their structures change only slightly during the manufacturing process. One such process is so-called vibratory finishing. This process and several other manufacturing processes geared towards sustainable manufacturing methods are being examined by the “Department of Mechanical and Aerospace Engineering” at the University of California, Davis (CA, USA). On the basis of a ray tracing model, simulations calculations, meaning only virtual measurements, will demonstrate the suitability of the sensor for monitoring manufacturing.

You have full access to the following eBook

Info:

Periodical:

Pages:

115-127

Citation:

Online since:

August 2017

Export:

* - Corresponding Author

[1] Seewig, Jörg; Damm, Tobias; Frasch, Janick; Kauven, David ; Rau, Sebastian ; Schnebele, Johannes: Reconstruction of Shape using Gradient Measuring Optical Systems. In: Osten, Wolfgang; Kujawinska, Malgorzata (Hrsg. ): Fringe 2009. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009, S. 1–7.

DOI: 10.1007/978-3-642-03051-2_65

Google Scholar

[2] Seewig, J.; Beichert, G.; Brodmann, R.; Bodschwinna, H.; Wendel, M.: Extraction of shape and roughness using scattering light. In: SPIE Europe Optical Metrology: SPIE, 2009 (SPIE Proceedings), 73890N.

DOI: 10.1117/12.827478

Google Scholar

[3] Linke, Barbara; Das, Jayanti: Aesthetics and Gloss of Ground Surfaces: A Review on Measurement and Generation. In: Journal of Manufacturing Science and Engineering 138 (2016), Nr. 6, S. 64501.

DOI: 10.1115/1.4032587

Google Scholar

[4] Azouigui, S.; Silvestri, Z.; Zerrouki, C.; Bouhtiyya, S.; Plimmer, M. D.; Spaltmann, D.; Kovalev, A. ; Woydt, M.; Pinot, P.: Angle resolved scattering as a tribological investigation tool for surface characterization. In: Wear 326-327 (2015).

DOI: 10.1016/j.wear.2014.12.040

Google Scholar

[5] Nadal, Maria E. ; Early, Edward A. ; Thompson, Ambler: Specular gloss. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, Physics Laboratory, Optical Technology Division, 2006 (NIST special publication 250-70).

Google Scholar

[6] Oberflächenbeschaffenheit: Geometrische Produktspezifikation; winkelaufgelöste Streulichtmesstechnik; Definition, Kenngrößen und Anwendung. Juli 2010. Berlin : VDA Verband der Automobilindustrie, 2010 (VDA-Empfehlung 2009).

Google Scholar

[7] Norm DIN EN ISO 4287. 07. 2010. Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Tastschnittverfahren – Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit (ISO 4287: 1997 + Cor 1: 1998 + Cor 2: 2005 + Amd 1: 2009); Deutsche Fassung EN ISO 4287: 1998 + AC: 2008 + A1: (2009).

DOI: 10.31030/1699310

Google Scholar

[8] Norm DIN EN ISO 25178-2. 09. 2012. Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Flächenhaft – Teil 2: Begriffe und Oberflächen-Kenngrößen (ISO 25178-2: 2012); Deutsche Fassung EN ISO 25178-2: (2012).

DOI: 10.31030/1754208

Google Scholar

[9] Das, Jayanti; Linke, Barbara: Evaluation and systematic selection of significant multi-scale surface roughness parameters (SRPs) as process monitoring index. In: Journal of Materials Processing Technology (2017).

DOI: 10.1016/j.jmatprotec.2017.01.017

Google Scholar

[10] Torner, Francois M.; Stelzer, Gerhard ; Anslinger, Lukas ; Seewig, Jörg: Description and evaluation of a simplified model to simulate the optical behavior of an angle-resolved scattered light sensor. In: Journal of Computing and Information Science in Engineering (2016).

DOI: 10.1115/1.4034386

Google Scholar

[11] Norm DIN EN ISO 25178-3. 11. 2012. Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Flächenhaft – Teil 3: Spezifikationsoperatoren (ISO 25178-3: 2012); Deutsche Fassung EN ISO 25178-3: (2012).

DOI: 10.31030/1876351

Google Scholar