Coupled Damage-Plasticity Modelling of Ductile Failure in an Aluminium Alloy

Article Preview

Abstract:

The ductile failure of metallic alloys is characterized by the long plateau of the stress-strain response during plastic deformation. In aluminium alloys this complex process is principally mediated by crystal slip associated with dislocation nucleation, motion, interaction, and locking. This results in hardening, i.e. the increase in the flow stress and progressive exhaustion of ductility, eventually leading to damage. Therefore, in the advanced stages of deformation the strength increase at the material level competes with overall stiffness and strength decrease due to effective cross-section reduction by decohesion and voiding. Capturing the complex hierarchical failure of these materials requires developing sophisticated concurrent constitutive descriptions of both plastic deformation and damage at different stages of failure. In the present study the modelling of aluminium alloy failure is accomplished using a plasticity-based model with nonlinear hardening coupled with isotropic damage in a thermodynamically consistent framework. The model developed in this way is enhanced with nonlocal regularization to deal with material instabilities issues due to softening. Emphasis is placed on the correspondence between experimental measurements of the essential work of fracture and the non-essential work of fracture, and both local and spatial sets of model parameters. This approach is the key to assuring a constitutive response consistent with experimental observations, an issue usually overlooked in nonlocal constitutive modelling. Numerical examples are used to demonstrate the features of the new approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

266-273

Citation:

Online since:

August 2015

Export:

Price:

[1] F.X.C. Andrade, J.M.A. César de Sá, F.M. Andrade Pires, A Ductile Damage Nonlocal Model of Integral-type at Finite Strains: Formulation and Numerical Issues. Int. J. Damage Mech. 20 (2011) 515-557.

DOI: 10.1177/1056789510386850

Google Scholar

[2] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plas. 24 (2008) 1071-1096.

DOI: 10.1016/j.ijplas.2007.09.004

Google Scholar

[3] J.P. Belnoue, G.D. Nguyen, A.M. Korsunsky, A One-Dimensional Nonlocal Damage-Plasticity Model for Ductile Materials, Int. J. Frac. 144 (2007) 53-60.

DOI: 10.1007/s10704-007-9075-4

Google Scholar

[4] R.K. Abu Al-Rub, G.Z. Voyiadjis, D.J. Bammann. A thermodynamic based higher-order gradient theory for size dependent plasticity. Int J Sol Struct 44 (2007) 2888-2923.

DOI: 10.1016/j.ijsolstr.2006.08.034

Google Scholar

[5] J.P. Belnoue, B. Garnham, M. Bache, A.M. Korsunsky, The use of coupled nonlocal damage-plasticity to predict crack growth in ductile metal plates, Eng. Fract. Mech. 77 (2010) 1721-1729.

DOI: 10.1016/j.engfracmech.2010.03.001

Google Scholar

[6] M. Brünig, O. Chyra, D. Albrecht, L. Driemeier, M. Alves, A ductile damage criterion at various stress triaxialities, Int. J. Plas. 24 (2008) 1731-1755.

DOI: 10.1016/j.ijplas.2007.12.001

Google Scholar

[7] M. Brünig, S. Gerke, V. Hagenbrock, Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage, Int. J. Plas. 50 (2013) 49-65.

DOI: 10.1016/j.ijplas.2013.03.012

Google Scholar

[8] J.L. Chaboche, Constitutive equations for cyclic plasticity and cyclic visco-plasticity, Int. J. Plas. 5 (3) (1989) 247-302.

DOI: 10.1016/0749-6419(89)90015-6

Google Scholar

[9] J.L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plas. 24 (2008) 1642-1693.

DOI: 10.1016/j.ijplas.2008.03.009

Google Scholar

[10] F. Ebnoether, D. Mohr, Predicting ductile fracture of low carbon steel sheets: Stress-based versus mixed stress/strain-based Mohr–Coulomb model, Int. J. Sol Struc. 50 (2013) 1055-1066.

DOI: 10.1016/j.ijsolstr.2012.11.026

Google Scholar

[11] A.S. Khan, H. Liu, A new approach for ductile fracture prediction on Al 2024-T351 alloy. Int. J. Plas. 35 (2012) 1-12.

DOI: 10.1016/j.ijplas.2012.01.003

Google Scholar

[12] A.M. Korsunsky, G.D. Nguyen, G.T. and Houlsby, Analysis of Essential Work of Rupture Using Non-local Damage-Plasticity Modelling, Int. J. Frac. 135(1-4) (2005) L19-L26.

DOI: 10.1007/s10704-005-4391-z

Google Scholar

[13] M. Luo, M. Dunand, D. Mohr, Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading – Part I: Plasticity, Int. J. Plas. 36 (2012) 34-49.

DOI: 10.1016/j.ijplas.2012.03.003

Google Scholar

[14] M. Luo, M. Dunand, D. Mohr, Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading – Part II: Ductile fracture, Int. J. Plas. 32–33 (2012) 36-58.

DOI: 10.1016/j.ijplas.2011.11.001

Google Scholar

[15] L. Malcher, F.M. Andrade Pires, J.M.A. César de Sá, An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality, Int. J. Plas. 30–31 (2012), 81-115.

DOI: 10.1016/j.ijplas.2011.10.005

Google Scholar

[16] J. Mediavilla, R.H.J. Peerlings, M.G.D. Geers, A nonlocal triaxiality-dependent ductile damage model for finite strain plasticity. Comp Meth Appl Mech Eng 195 (2006) 4617-4634.

DOI: 10.1016/j.cma.2005.10.001

Google Scholar

[17] Z.M. Yue, C. Soyarslan, H. Badreddine, K. Saanouni, K. Tekkaya, Identification of fully coupled anisotropic plasticity and damage constitutive equations using a hybrid experimental–numerical methodology with various triaxialities. Int J. Damage Mech (2015, in press).

DOI: 10.1177/1056789514546578

Google Scholar

[18] L. Malcher, E.N. Mamiya, An improved damage evolution law based on continuum damage mechanics and its dependence on both stress triaxiality and the third invariant, Int J Plas, 56(2014) 232–261.

DOI: 10.1016/j.ijplas.2014.01.002

Google Scholar

[19] F. Marotti de Sciarra, Hardening plasticity with nonlocal strain damage. Int J Plas 34(2012) 114-138.

DOI: 10.1016/j.ijplas.2012.01.009

Google Scholar

[20] R.H.J. Peerlings, L.H. Poh, M.G. D Geers, An implicit gradient plasticity–damage theory for predicting size effects in hardening and softening. Eng Frac Mech 95(2012), 2-12.

DOI: 10.1016/j.engfracmech.2011.12.016

Google Scholar

[21] K. Saanouni, M. Hamed, Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects. Int J Sol Struct 50(2013) 2289-2309.

DOI: 10.1016/j.ijsolstr.2013.03.027

Google Scholar

[22] Marotti de Sciarra, F., 2009. Novel variational formulations for nonlocal plasticity. International Journal of Plasticity 25, 302-331.

DOI: 10.1016/j.ijplas.2008.02.002

Google Scholar

[23] J. Besson, Continuum models of ductile fracture: a review. Int J Dam Mech 19(2009) 3-52.

Google Scholar

[24] G.T. Houlsby, A.M. Puzrin, A thermomechanical framework for constitutive models for rate-independent dissipative materials, Int. J. Plas. 16 (2000) 1017-1047.

DOI: 10.1016/s0749-6419(99)00073-x

Google Scholar

[25] G.D. Nguyen, A.M. Korsunsky, J.P. Belnoue, A nonlocal coupled damage-plasticity model for the analysis of ductile failure Int. J. Plas. 64 (2015) 56-75.

DOI: 10.1016/j.ijplas.2014.08.001

Google Scholar

[26] A.M. Korsunsky, K. Kim, Determination of essential work of necking and tearing from a single tensile test, Int. J. Frac. 132(3) (2005) 37-44.

DOI: 10.1007/s10704-005-4483-9

Google Scholar