Application of the Lattice Boltzmann Method for Fluid Flow around Complex Geometry

Article Preview

Abstract:

In recent years, several strategies have been proposed to deal with complex geometry to study particle-fluid interaction using lattice Boltzmann method. Curved boundary treatments have been suggested to improve the accuracy of the stair-shaped approximation in conventional lattice Boltzmann simulations. This paper presents numerical analysis of three interpolation methods for confined flow around blockage positioned inside a channel. A two-dimensional nine velocity lattice arrangement was chosen to discretize the fluid domain and single relaxation time technique is applied in this study. The results are presented in terms of velocity contour, lift and drag forces variation for three different shapes of blockage. The simulations results are then compared with those obtained using the three different interpolating treatments. Some of these methods show more adaptability for force evaluating on distinct surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

230-235

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] L. Jahanshaloo, N.A.C. Sidik, K.E. Pouryazdanpanah, A review on application of lattice Boltzmann method for turbulent flow simulation, Numer. Heat. Tr. A. 64 (2013) 938-953.

DOI: 10.1080/10407782.2013.807690

Google Scholar

[2] Y. Xia, J. Wu, Y. Zhang, Lattice-Boltzmann Simulation of Two-Dimensional Super-Diffusion, Engineering Applications of Computational Fluid Mechanics. 6 (2012) 581-594.

DOI: 10.1080/19942060.2012.11015444

Google Scholar

[3] N.A.C. Sidik, L. Jahanshaloo, Prediction of dynamics of solid particles using lattice Boltzmann method, International Review of Mechanical Engineering. 5 (2011) 1235-1240.

Google Scholar

[4] C.S.N. Azwadi, L. Jahanshaloo, A. Safdari, The effect of mixed convection on particle laden flow analysis in a cavity using a Lattice Boltzmann method, Comput. Math. Appl. 67 (2014) 52-61.

DOI: 10.1016/j.camwa.2013.10.015

Google Scholar

[5] F. Kuznik, C. Obrecht, G. Rusaouen, J. -J. Roux, LBM based flow simulation using GPU computing processor, Comput. Math. Appl. 59 (2010) 2380-2392.

DOI: 10.1016/j.camwa.2009.08.052

Google Scholar

[6] J. Tomiyasu, T. Inamuro, Numerical simulations of gas-liquid two-phase flows in a micro porous structure, The European Physical Journal Special Topics, 171 (2009) 123-127.

DOI: 10.1140/epjst/e2009-01019-5

Google Scholar

[7] C. Williamson, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech. 28 (1996) 477-539.

DOI: 10.1146/annurev.fl.28.010196.002401

Google Scholar

[8] M.M. Zdravkovich, Flow around Circular Cylinders: Volume 2: Applications. Vol., Oxford University Press. (2003).

Google Scholar

[9] K.M. Kelkar, S.V. Patankar, Numerical prediction of vortex shedding behind a square cylinder, Int. J. Numer. Meth. Fl. 14 (1992) 327-341.

DOI: 10.1002/fld.1650140306

Google Scholar

[10] H. Suzuki, Y. Inoue, T. Nishimura, K. Fukutani, K. Suzuki, Unsteady flow in a channel obstructed by a square rod (crisscross motion of vortex), Int. J. Heat Fluid Fl. 14 (1993) 2-9.

DOI: 10.1016/0142-727x(93)90034-k

Google Scholar

[11] X. Yin, J. Zhang, An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method, J. Comput. Phys. 231 (2012) 4295-4303.

DOI: 10.1016/j.jcp.2012.02.014

Google Scholar

[12] P.H. Kao, R. -J. Yang, An investigation into curved and moving boundary treatments in the lattice Boltzmann method, J. Comput. Phys. 227 (2008) 5671-5690.

DOI: 10.1016/j.jcp.2008.02.002

Google Scholar

[13] A.J.C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271 (1994) 285.

DOI: 10.1017/s0022112094001771

Google Scholar

[14] A.J.C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech. 271 (1994) 311.

DOI: 10.1017/s0022112094001783

Google Scholar

[15] O. Filippova, D. Hänel, Lattice-BGK model for low Mach number combustion, Int. J. Mod. Phys. C. 9 (1998) 1439-1445.

DOI: 10.1142/s0129183198001308

Google Scholar

[16] R. Mei, D. Yu, W. Shyy, Force evaluation in the lattice Boltzmann method involving curved geometry, Phys. Rev. E. 65 (2002) 041203.

DOI: 10.1103/physreve.65.041203

Google Scholar

[17] P. Lallemand, L.S. Luo, Lattice Boltzmann method for moving boundaries, J. Comput. Phys. 184 (2003) 406-421.

DOI: 10.1016/s0021-9991(02)00022-0

Google Scholar

[18] M.H. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids. 13 (2001) 3452.

DOI: 10.1063/1.1399290

Google Scholar

[19] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94 (1954) 511.

DOI: 10.1103/physrev.94.511

Google Scholar