On the Van Der Pol Oscillator: an Overview

Article Preview

Abstract:

In this paper an overview of the self-sustained oscillators is given. The standard van der Pol and the Rayleigh oscillators are considered as basic ones. The cubic nonlinear term of Duffing type is included. The special attention is given to the various complex systems based on the Rayleighs and van der Pols oscillator which are extended with the nonlinear oscillators of Duffing type and also excited with a periodical force. The connection is with the linear elastic force or with linear damping force. The objectives for future investigation are given in this matter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-13

Citation:

Online since:

September 2013

Export:

Price:

[1] B. van der Pol, On relaxation-oscillations. The London, Edinburgh and Dublin Philosophical Magazine & Journal of Science 2 (7) (1926) 901-912.

DOI: 10.1080/14786442608564127

Google Scholar

[2] A. Lienard, Etude des oscillations entrenues. Rev. Generale de l'Electricite 23 (1928) 946-954.

Google Scholar

[3] A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations. New York: Wiley, (1979).

Google Scholar

[4] B. van der Pol, J. van der Mark, The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil. Mag. Suppl. 6 (1928) 763-775.

DOI: 10.1080/14786441108564652

Google Scholar

[5] H.G. Narm, A new state observer for two coupled van der Pol oscillators, Int. J. of Control. Automation and Systems 9 (2011) 420-414.

DOI: 10.1007/s12555-011-0225-0

Google Scholar

[6] J. Rayleigh, The Theory of Sound. New York: Dover, (1945).

Google Scholar

[7] M.R. Navabi, M.S.M. Deghghan, Numerical solution of the controlled Rayleigh nonlinear oscillator by the direct spectral method. J. of Vibr. and Control 14 (6) (2008) 795-806.

DOI: 10.1177/1077546307084239

Google Scholar

[8] B. van der Pol, J. Van der Mark, Frequency demultiplication. Nature 120 (1927) 363-364.

DOI: 10.1038/120363a0

Google Scholar

[9] J. M. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos. New York: John Wiley and Sons, (1986).

Google Scholar

[10] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Field. New York: Springer, (1983).

Google Scholar

[11] C. Partliz, W. Lauterborn, Period doubling cascade and devil staircases of the driven van der Pol oscillator. Phys. Rev. A 36 (1987)1428-1434.

DOI: 10.1103/physreva.36.1428

Google Scholar

[12] A. Venkatesan, M. Lakshmanan, Bifurcation and chaos in the double –well Duffing-van der Pol oscillator: numerical and analytical studies. Phys. Rev. E 56 (1997) 6321-6330.

DOI: 10.1103/physreve.56.6321

Google Scholar

[13] J.C. Chedjou, H.B. Fotsin, P. Woafo, S. Domngang, Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator. IEEE Trans. Circuits Syst. I Fudam. Theory Application 48 (2001) 748-756.

DOI: 10.1109/81.928157

Google Scholar

[14] M.S. Siewe, H. Cao, M.A.F. Sanjuan, Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator. Chaos, Solitons & Fractals 39 (2009) 1092-1099.

DOI: 10.1016/j.chaos.2007.05.007

Google Scholar

[15] M.S. Siewe, C. Tchawoua, P. Woafo, Melnikov chaos in a periodically driven Raylegy-Duffing oscillator. Mech. Research Commun. 37 (2010) 363-368.

DOI: 10.1016/j.mechrescom.2010.04.001

Google Scholar

[16] S. Li, S. Yang, W. Guo, Investigation of chaotic motion in histeric non-linear suspension system with multi-frequency excitations. Mech. Research Commun. 31 (2004) 229.

DOI: 10.1016/j.mechrescom.2003.10.002

Google Scholar

[17] Q. He, W. Xu, H. Rong, T. Fang, Stochastic bifurcation in Duffing-Van der Pol oscillators. Physica A 338 (2004) 319-334.

DOI: 10.1016/j.physa.2004.01.067

Google Scholar

[18] W.X. Xie, W. Xu, L. Cai, Path integration of the Duffing-Rayleigh oscillator subject to harmonic and stochastic excitations. Appl. Math. Comput. 171 (2005) 870-884.

DOI: 10.1016/j.amc.2005.01.095

Google Scholar

[19] Q. Ding, A.Y.T. Leung, The number of limit cycle bifurcation diagrams for the generalized mixed Rayleigh-Liénard oscillator. J. of Sound and Vibr. 322 (2009) 393-400.

DOI: 10.1016/j.jsv.2008.11.014

Google Scholar

[20] S. Lynch, C.J. Christopher, Limit cycles in highly non-linear differential equations. J. of Sound and Vibr. 224 (1999) 505-517.

DOI: 10.1006/jsvi.1999.2199

Google Scholar

[21] L.D. Akulenko, L.I. Korovina, S.A. Kumakshev, S.V. Nesterov, Self-sustained oscillations of Rayleigh and van der Pol oscillators with moderately large feedback factors. J. of Appl. Math. Mech. 68 (2004) 241-248.

DOI: 10.1016/s0021-8928(04)90023-8

Google Scholar

[22] L.D. Akulenko, L.I. Korovina, S.V. Nesterov, Self-sustained oscillations of a highly non-linear system. Izvestija Rossija Akademia Nauk MTT 3 (2002) 42-48.

Google Scholar

[23] L. Cveticanin, On the truly nonlinear oscillator with positive and negative damping. Submitted for publication.

Google Scholar

[24] L. Cveticanin, Van der Pol oscillator with time-variable parameters. Acta Mech. 224 (5) (2013) 945-955.

DOI: 10.1007/s00707-012-0785-y

Google Scholar

[25] J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating 1214-nerve axons. Proceedings IRL 50 (1960), p.2061-(2070).

DOI: 10.1109/jrproc.1962.288235

Google Scholar

[26] R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membranes. 1182-Biophysics Journal 1 (1961), pp.445-466.

DOI: 10.1016/s0006-3495(61)86902-6

Google Scholar

[27] J. Kengne, J.C. Chedjou, G. Kenne, K. Kyamakya, G.H. Kom, Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator. Nonlinear Dynamics 70 (2012) 2163 -2173.

DOI: 10.1007/s11071-012-0607-8

Google Scholar

[28] R. Yamapi, P. Woafo, Dynamics and synchronization of coupled self-susteained electromechanical devices. J. of Sound and Vibr. 285 (2005) 1151-1170.

DOI: 10.1016/j.jsv.2004.09.011

Google Scholar

[29] J.C. Chedjou, K. Kyamakya, I. Moussa, H. -P. Kuchenbecker, W. Mathis, Behavior of a self sustained electromechanical transducer and routes to chaos. J. Vibr. Acoustics 128 (2008) 282-293.

DOI: 10.1115/1.2172255

Google Scholar

[30] G. Litak, M.I. Borowiec, K. Friswell, Chaotic vibration of a quarter-car model excited by the road surface profile. Commun. in Nonlinear Sci. and Numer. Simul. 13 (2008) 1373-1383.

DOI: 10.1016/j.cnsns.2007.01.003

Google Scholar

[31] A.P. Kuznetsov, J.P. Roman, Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol-Duffing oscillators. Broadband synchronization, Physica D 238 (2009) 1499-1506.

DOI: 10.1016/j.physd.2009.04.016

Google Scholar

[32] A.Y.T. Leung, Z. Guo, H.X. Yang, Residue harmonic balance analysis for the damped Duffing resonator driven by a van der Pol oscillator. Int. J. of Mech. Sci. 63 (2012) 59-65.

DOI: 10.1016/j.ijmecsci.2012.06.011

Google Scholar

[33] A.P. Kuznetsov, N.V. Stankevich, L.V. Turukina, Coupled van der Pol-Duffing oscillators: phase dynamics and structure synchronization. Physica D 238 (2009) 1203-1215.

DOI: 10.1016/j.physd.2009.04.001

Google Scholar

[34] Y.H. Qian, W. Zhang, B.W. Lin, S.K. Lai, Analytical approximate periodic solutions for two-degree-of-freedom coupled van der Pol-Duffing oscillators by extended homotopy analysis method. Acta Mech. 219 (2011) 1-14.

DOI: 10.1007/s00707-010-0433-3

Google Scholar

[35] Y.H. Qian, C.M. Duan, S.M. Chen, S.P. Chen, Asymptotic analytical solutions of the two-degree-of-freedom strongly nonlinear van der Pol oscillators with cubic couple terms using extended homotopy analysis method. Acta Mech. 223 (2012) 237-255.

DOI: 10.1007/s00707-011-0554-3

Google Scholar

[36] A.K. Eigoli, M. Khodabakhsh, A homotopy analysis method for limit cycle of the van der Pol oscillator with delayed amplitude limiting. Appl. Math. Comput. 217 (2011) 9404-9411.

DOI: 10.1016/j.amc.2011.04.029

Google Scholar