Finite Element Analysis and Deformation Homogeneity Optimization of Constrained Groove Pressing

Article Preview

Abstract:

Improvement of materials properties induced by constrained groove pressing (CGP) depends largely on deformation homogeneity. Utilizing commercial software DEFORM-3D, a finite element model of multi-pass CGP was established. The distribution and homogeneity evolution of equivalent strain ware analyzed in detail. Based on Taguchi optimization method, the influence of processing parameters (such as groove width, groove angle, friction coefficient and deformation rate) on strain homogeneity was studied numerically and systematically. Within a certain range, the optimum parameter combination is obtained by means of signal to noise ratio analysis. The inhomogeneity factor of the optimum model decreases by about 50 %. The average accumulative equivalent strain is almost twice that of the initial model. Analysis of variance shows that groove angle and groove width are the two most important parameters and effect of friction between dies and sample should not be neglected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

505-513

Citation:

Online since:

January 2013

Export:

Price:

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Progress in Materials Science. 45 (2000) 103-189.

Google Scholar

[2] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, CIRP Annals-Manufacturing Technology. 57 (2008) 716-735.

DOI: 10.1016/j.cirp.2008.09.005

Google Scholar

[3] Y.T. Zhu, T.C. Lowe, T.G. Langdon, Scripta Materialia. 51 (2004) 825-830.

Google Scholar

[4] D.H. Shin, J. Park, Y. Kim, K. Park, Materials Science and Engineering A. 328 (2002) 98-103.

Google Scholar

[5] A. Krishnaiah, U. Chakkingal, P. Venugopal, Scripta Materialia. 52 (2005) 1229-1233.

Google Scholar

[6] F. Khakbaz, M. Kazeminezhad, Journal of Manufacturing Processes. 14 (2012) 20-25.

Google Scholar

[7] A. Krishnaiah, U. Chakkingal, P. Venugopal, Materials Science and Engineering A, 410-411 (2005) 337-340.

Google Scholar

[8] K. Peng, L. Su, L.L. Shaw, K.W. Qian, Scripta Materialia. 56 (2007) 987-990.

Google Scholar

[9] F. Khodabakhshi, M. Kazeminezhad, A.H. Kokabi, Materials Science and Engineering A. 527 (2010) 4043-4049.

Google Scholar

[10] S.S. Satheesh Kumar, T. Raghu, Materials and Design. 32 (2011) 4650-4657.

Google Scholar

[11] A. Thirugnanam, T.S. Sampath Kumar, U. Chakkingal, Materials Science and Engineering C. 30 (2010) 203-208.

Google Scholar

[12] A. Shirdel, A. Khajeh, M.M. Moshksar, Materials and Design. 31 (2010) 946-950.

Google Scholar

[13] G.G. Niranjan, U. Chakkingal, Journal Materials Processing Technology. 210 (2010) 1511-1516.

Google Scholar

[14] S.C. Yoon, A. Krishnaiah, U. Chakkingal, H.S. Kim, Computational Materials Science. 43 (2008) 641-645.

Google Scholar

[15] X. Mou, K. Peng, J. Zeng, L.L. Shaw, K.W. Qian, Journal Materials Processing Technology. 211 (2011) 590-596.

Google Scholar

[16] E. Rafizadeh, A. Mani, M. Kazeminezhad, Materials Science and Engineering A. 515 (2009) 162-173.

Google Scholar

[17] E. Hosseini, M. Kazeminezhad, Computational Materials Science. 48 (2010) 166-173.

Google Scholar

[18] K. Yang, K. Peng, W. Chen, Journal of Plastic Engineering. 17 (2010) 8-12. (in Chinese).

Google Scholar

[19] E. Hosseini, M. Kazeminezhad, Materials Science and Engineering A. 526 (2009) 219-224.

Google Scholar

[20] K. Peng, Y. Zhang, L.L. Shaw, K.W. Qian, Acta Materialia. 57 (2009) 5543-5553.

Google Scholar