A Pneumatically Driven Stewart Platform Used as Fault Detection Device

Article Preview

Abstract:

This paper investigates the sensorless detection and evaluation of inner oscillations of unknown test objects mounted on a compliant test bench. The principle of the sensorless analysis is that test objects are not totally rigid in reality. This means one or more parts of the test objects are oscillating with different eigenfrequencies compared to their rigid equivalent. By comparing eigenfrequencies of both (rigid and fault test object) oscillating parts are detectable. The aim of this experiment is to demonstrate the use of a 6 DOF compliant Stewart platform (alternatively used in a simulation environment) to generate frequency sweeps in all degrees of freedom, to get a sensorless detection of vibrations in unknown objects. For this purpose only the preexisting sensors applied for the control of the hexapod should be used. The detection of loose parts by shaking objects can be done by a complex robotic manipulation task. Being designed for flexible use by small and medium-sized enterprises, the robotic Stewart platform (hexapod) will adapt autonomously to different test objects leading to a highly flexible robot.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-233

Citation:

Online since:

June 2012

Export:

Price:

[1] H. Aschemann, E. Hofer, Flatnessbased control of a carriage driven by pneumatic muscles, In Proceedings of MMAP (2003) pp.1219-1224.

Google Scholar

[2] J. Merlet, Parallel Robots, Kluwer Academic Publishers, Dordrecht, 2000.

Google Scholar

[3] H. Bremer, Elastic Multibody Dynamics-A Direct Ritz Approach, Springer, 2008.

Google Scholar

[4] J. Schwandtner, Konstruktion, Modellierung und Regelung eines Hexapods mit Luftmuskel Aktuatorik, JK University Linz, Linz, 2007.

Google Scholar

[5] K. Springer, Filter für Bewegungssimulatoren auf Basis einer Stewart-Platform, JK University Linz, Linz, 2010.

Google Scholar

[6] R. Neumann, C. Bretz, J. Volzer, Ein Positionierantrieb mit hoher Kraft: Positions- und Druckregelung eines künstlichen pneumatischen Muskels, 4. International Fluidtechnik Kolloquium, 2004.

Google Scholar

[7] M.D. Singh, K. Leim, R. Neumann, A. Kecskemethy, Modeling of a pneumatic hybrid actuator using an exponential approach for approximation of the valve-actuator behaviour, In PAMM Proceedings for Applied Mathematics and Mechanics (2006) pp.803-804.

DOI: 10.1002/pamm.200610381

Google Scholar

[8] S. Staicu, Dynamics of the 6-6 Stewart parallel manipulator, Robotics and Computer-Integrated Manufacturing, 27, 1, (2011) pp.212-220.

DOI: 10.1016/j.rcim.2010.07.011

Google Scholar

[9] S. Staicu, Power requirement comparison in the 3-RPR planar parallel robot dynamics, Mechanism and Machine Theory, 44, 5, (2009) pp.1045-1057.

DOI: 10.1016/j.mechmachtheory.2008.05.009

Google Scholar

[10] S. Staicu, Modèle dynamique en robotique, UPB Scientific Bulletin, Series D: Mechanical Engineering, 61, 3-4, (1999) pp.5-19.

Google Scholar