In Situ Temperature Measurement in the Shearing Zone during Sheet Metal Blanking

Article Preview

Abstract:

Blanking is one of the most widely used manufacturing technologies in sheet metalprocessing, because nearly each sheet must be trimmed out of a semi-finished part or has to beblanked after a forming process to get the precast part in the manufacturing chain. In general, a highquantity of blanked parts should be manufactured without reworking the tool. Therefore a capableprocess is indispensable to avoid inadequate part quality or premature failure of the tool because ofwear. The blanking process is affected by tool parameters, the press and the material properties ofthe blanked part.However, another important factor is the occurring temperature in the shearing zone of the sheetmetal due to the dissipation of nearly 95% of the plastic work during blanking and, in addition,frictional heating. This temperature impacts the blanking process features such as tool-wear andresulting cut edge quality. It has been presumed to be negligible by a lot of authors yet. In contrastsome publications with experimental and analytical research assume that the temperature reachesvalues up to 1000°C. Therefore, this report outlines a thermoelectric method to measure theresulting temperature distribution during the blanking process on the cutting edge of the blankingpunch. The feasibility of the investigated measurement concept is shown on a concrete example.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-212

Citation:

Online since:

January 2012

Export:

Price:

[1] DIN 8588, Manufacturing processes severing - Classification, subdivision, terms and definitions, September, (2003).

Google Scholar

[2] R. -A. Schmidt, Feinschneiden und Umformen, Carl Hanser Verlag München, (2007).

Google Scholar

[3] D. Macdougall, Determination of the plastic work converted to heat using radiometry, Journal: Experimental Mechanics Vol. 40, No. 3, p.298 – 306, (2000).

DOI: 10.1007/bf02327503

Google Scholar

[4] W. Oliferuk, Rate of energy storage and microstructure evolution during the tensile deformation, Materials Science and Engineering, Vol. 161, p.55 – 63, (1993).

DOI: 10.1016/0921-5093(93)90475-t

Google Scholar

[5] M. Vaz, A computational approach to blanking processes, Journal of Materials Processing Technology 125 – 126, (2002).

Google Scholar

[6] D. -C. Ko, Finite-element simulation of the shear process using the element-kill method, Journal of Materials Processing Technology 72, (1997).

DOI: 10.1016/s0924-0136(97)00144-1

Google Scholar

[7] F. Klocke, W. König, Fertigungsverfahren 4 – Umformen, 5. Auflage, Springer Verlag, (2006).

Google Scholar

[8] R. Dies, Temperaturmessung beim Lochen von Blechen, Werkstatt und Betrieb, Vol. 88/10, pp.651-654, (1955).

Google Scholar

[9] P. Huml, Hochgeschwindigkeitsschneiden, Draht-Fachzeitschrift, Vol. 27/1-6, pp.273-276, (1976).

Google Scholar

[10] P. Huml, Der Einfluss der adiabten Erwärmung und Entfestigung auf das Formänderungs-vermögen bei der Warmumformung, Annals oft he CIRP, Vol. 24/1, p.207 – 211, (1975).

Google Scholar

[11] H. Rumpf, Problemstellungen und neuere Ergebnisse der Bruchtheorie, Materialprüfung Band 3 Nr. 7, Deutscher Verband für Materialprüfung (DVM), (1961).

Google Scholar

[12] F. Hörmann, P. Maier-Komor, H. Hoffmann, Möglichkeiten und Grenzen der Schneid-simulation, BlechInForm, Vol. 6, pp.47-51, (2006).

Google Scholar

[13] St. Marsoner, Verschleiß gezielt bekämpfen, Blech in Form, 4/2007, Carl Hanser Verlag, (2007).

Google Scholar

[14] R. Pelster, R. Pieper, I. Hüttl, Thermospannungen – Viel genutzt und fast immer falsch erklärt, Physik und Didaktik in Schule und Hochschule, Vol. 1/4, p.10 – 22, (2005).

Google Scholar

[15] A. Meier, Universal measuring amplifier for low DC voltage, VHF communications, Vol. 2, p.88 – 95, (2005).

Google Scholar