Mechanical Characterization of AA 6061-T6 MIG Welded Aluminum Alloys Using a Robotic Arm

Article Preview

Abstract:

Aluminum alloys are of particular interest in the design of lightweight structures in different applications. Accordingly, welding aluminum alloys (AA) is a critical issue; for example, welding defects could arise during the traditional welding of aluminum alloys. This paper investigates the effects of welding using a robotic arm on the mechanical properties of 6061-T6 Aluminum alloy, as plates joined by Metal Inert Gas (MIG) welding. The tensile behavior and mechanical properties were investigated using tensile testing, hardness testing, and impact testing. The tensile behavior of AA-6061-T6 un-welded and welded specimens showed a decrease in the tensile strength of the welded specimens due to the fusion of the welded zone and the partially melted zone (PMZ). The hardness test showed an increase in the hardness values away from the welded zone, attributed to voids and defects in the welded and HAZ zones. In addition, the impact behavior showed that the maximum impact is in the base metal zone, and the minimum is in the HAZ. Scanning electron microscopy was used to investigate the welded and un-welded Aluminum microstructures. The mechanical properties of AA 6061-T6 Aluminum alloy were sensitive to the novel welding process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-278

Citation:

Online since:

March 2022

Export:

Price:

* - Corresponding Author

[1] Laban O, Mahdi E (2017) Enhancing mode I inter-laminar fracture toughness of aluminum/fiberglass fiber-metal laminates by combining surface pre-treatments. Int J Adhes Adhes 78:234–239. https://doi.org/10.1016/j.ijadhadh.2017.08.008.

DOI: 10.1016/j.ijadhadh.2017.08.008

Google Scholar

[2] Mahdi ES, Eltai EO (2014) Study on the impact of welding on the corrosion properties of AA 6061 T6. Appl Mech Mater 575:210–213. https://doi.org/10.4028/www.scientific.net/AMM.575.210.

DOI: 10.4028/www.scientific.net/amm.575.210

Google Scholar

[3] Conference T, Hotel BV, Mahdi E (2013) The Corrosion and Mechanical Properties of AA 6061 T6 Joined By MIG Welding Method. Proc Glob Sci Technol Conf 2:33–41.

Google Scholar

[4] Mahdi ES, Eltai EO (2014) Study on the impact of welding on the corrosion properties of AA 6061 T6. Appl Mech Mater 575:210–213. https://doi.org/10.4028/www.scientific.net/AMM.575.210.

DOI: 10.4028/www.scientific.net/amm.575.210

Google Scholar

[5] Sebaey TA, Mahdi E (2016) Using thin-plies to improve the damage resistance and tolerance of aeronautical CFRP composites. Compos Part A Appl Sci Manuf 86:31–38. https://doi.org/10.1016/j.compositesa.2016.03.027.

DOI: 10.1016/j.compositesa.2016.03.027

Google Scholar

[6] Ebrahimi H, Ghosh R, Mahdi E, et al (2016) Honeycomb sandwich panels subjected to combined shock and projectile impact. Int J Impact Eng 95:1–11. https://doi.org/10.1016/j.ijimpeng.2016.04.009.

DOI: 10.1016/j.ijimpeng.2016.04.009

Google Scholar

[7] Zheng Y, Bahaloo H, Mousanezhad D, et al (2016) Stress analysis in functionally graded rotating disks with non-uniform thickness and variable angular velocity. Int J Mech Sci 119:283–293. https://doi.org/10.1016/j.ijmecsci.2016.10.018.

DOI: 10.1016/j.ijmecsci.2016.10.018

Google Scholar

[8] Mahdi E, Hamouda AMS (2013) An experimental investigation into mechanical behavior of hybrid and nonhybrid composite semi-elliptical springs. Mater Des 52:504–513. https://doi.org/10.1016/j.matdes.2013.05.040.

DOI: 10.1016/j.matdes.2013.05.040

Google Scholar

[9] Alabtah FG, Mahdi E, Eliyan FF, et al (2021) Towards the Development of Novel Hybrid Composite Steel Pipes: The Electrochemical Evaluation of Fiber-Reinforced Polymer Layered Steel against Corrosion. Polymers (Basel) 13:3805.

DOI: 10.3390/polym13213805

Google Scholar

[10] Alabtah FG, Mahdi E, Khraisheh M (2021) External Corrosion Behavior of Steel/GFRP Composite Pipes in Harsh Conditions. Materials (Basel) 14:6501.

DOI: 10.3390/ma14216501

Google Scholar

[11] Rafi HK, Ram GDJ, Phanikumar G, Rao KP (2010) Microstructure and tensile properties of friction welded aluminum alloy AA7075-T6. Mater Des 31:2375–2380. https://doi.org/10.1016/j.matdes.2009.11.065.

DOI: 10.1016/j.matdes.2009.11.065

Google Scholar

[12] Malarvizhi S, Balasubramanian V (2011) Effect of welding processes on AA2219 aluminium alloy joint properties. Trans Nonferrous Met Soc China (English Ed 21:962–973. https://doi.org/10.1016/S1003-6326(11)60808-X.

DOI: 10.1016/s1003-6326(11)60808-x

Google Scholar

[13] Farag MH, Mahdi E (2019) New approach of pipelines joining using fiber reinforced plastics composites. Compos. Struct. 228.

DOI: 10.1016/j.compstruct.2019.111341

Google Scholar

[14] Jacob MSD, Arora PR, Saleem M, et al (2007) Fretting fatigue crack initiation: An experimental and theoretical study. Int J Fatigue 29:1328–1338. https://doi.org/10.1016/j.ijfatigue.2006.10.006.

DOI: 10.1016/j.ijfatigue.2006.10.006

Google Scholar

[15] Al-Abtah FG, Mahdi E, Gowid S (2020) The use of composite to eliminate the effect of welding on the bending behavior of metallic pipes. Compos Struct 235:. https://doi.org/10.1016/j.compstruct.2019.111793.

DOI: 10.1016/j.compstruct.2019.111793

Google Scholar

[16] Ancona A, Lugarà PM, Sorgente D, Tricarico L (2007) Mechanical characterization of CO2 laser beam butt welds of AA5083. J Mater Process Technol 191:381–384. https://doi.org/10.1016/j.jmatprotec.2007.03.048.

DOI: 10.1016/j.jmatprotec.2007.03.048

Google Scholar

[17] Haghayeghi R, Zoqui EJ, Bahai H (2009) An investigation on the effect of intensive shearing on the grain refinement of A5754 aluminium alloy. J Alloys Compd 481:358–364. https://doi.org/10.1016/j.jallcom.2009.02.135.

DOI: 10.1016/j.jallcom.2009.02.135

Google Scholar

[18] Li A, Liu X, Wan X, Yang Y (2020) Thermal behaviors and fluid flow controlling the geometry of 7075 aluminum alloy single tracks during liquid metal flow rapid cooling additive manufacturing. Int Commun Heat Mass Transf 116:. https://doi.org/10.1016/j.icheatmasstransfer.2020.104664.

DOI: 10.1016/j.icheatmasstransfer.2020.104664

Google Scholar

[19] Panigrahi SK, Jayaganthan R, Pancholi V (2009) Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy. Mater Des 30:1894–1901. https://doi.org/10.1016/j.matdes.2008.09.022.

DOI: 10.1016/j.matdes.2008.09.022

Google Scholar

[20] Sharma C, Dwivedi DK, Kumar P (2012) Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy. Mater Des 36:379–390. https://doi.org/10.1016/j.matdes.2011.10.054.

DOI: 10.1016/j.matdes.2011.10.054

Google Scholar

[21] Munitz A, Shtechman A, Cotler C, et al (1998) Mechanical properties and microstructure of neutron irradiated cold worked Al-6063 alloy. J Nucl Mater 252:79–88. https://doi.org/10.1016/S0022-3115(97)00293-6.

DOI: 10.1016/s0022-3115(97)00293-6

Google Scholar

[22] Liu HJ, Fujii H, Maeda M, Nogi K (2003) Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. J Mater Process Technol 142:692–696. https://doi.org/10.1016/S0924-0136(03)00806-9.

DOI: 10.1016/s0924-0136(03)00806-9

Google Scholar

[23] Zang M, Hu Y, Zhang J, et al (2020) Crashworthiness of CFRP/aluminum alloy hybrid tubes under quasi-static axial crushing. J Mater Res Technol 9:7740–7753. https://doi.org/10.1016/j.jmrt.2020.05.046.

DOI: 10.1016/j.jmrt.2020.05.046

Google Scholar

[24] Liu H, Zheng J, Guo Y, Zhu L (2020) Residual stresses in high-speed two-dimensional ultrasonic rolling 7050 aluminum alloy with thermal-mechanical coupling. Int J Mech Sci 186:. https://doi.org/10.1016/j.ijmecsci.2020.105824.

DOI: 10.1016/j.ijmecsci.2020.105824

Google Scholar

[25] Thomesen S, Hopperstad OS, Myhr OR, Børvik T (2020) Influence of stress state on plastic flow and ductile fracture of three 6000-series aluminium alloys. Mater Sci Eng A 783:. https://doi.org/10.1016/j.msea.2020.139295.

DOI: 10.1016/j.msea.2020.139295

Google Scholar

[26] L'Haridon-Quaireau S, Laot M, Colas K, et al (2020) Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers. J Alloys Compd 833:. https://doi.org/10.1016/j.jallcom.2020.155146.

DOI: 10.1016/j.jallcom.2020.155146

Google Scholar

[27] Eltai EO, Mahdi ES (2014) Tensile, hardness, and torsion behavior of welded AA. In: Applied Mechanics and Materials. p.400–404.

DOI: 10.4028/www.scientific.net/amm.575.400

Google Scholar

[28] Al-Abtah FG, Al-Huniti N, Mahdi E (2019) Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31. In: Procedia Computer Science. p.177–197.

DOI: 10.1016/j.procs.2019.09.041

Google Scholar

[29] Mori K ichiro, Abe Y (2018) A review on mechanical joining of aluminium and high strength steel sheets by plastic deformation. Int. J. Light. Mater. Manuf. 1:1–11.

Google Scholar

[30] Zhang J, Chaisombat K, He S, Wang CH (2012) Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mater Des 36:75–80. https://doi.org/10.1016/j.matdes.2011.11.006.

DOI: 10.1016/j.matdes.2011.11.006

Google Scholar

[31] Abbas MKG, Niakan A, Ming CC, et al (2017) Design and numerical analysis of leaf spring using composite materials. In: Key Engineering Materials. p.305–310.

DOI: 10.4028/www.scientific.net/kem.723.305

Google Scholar

[32] Sakundarini N, Taha Z, Abdul-Rashid SH, Ghazila RAR (2013) Optimal multi-material selection for lightweight design of automotive body assembly incorporating recyclability. Mater Des 50:846–857. https://doi.org/10.1016/j.matdes.2013.03.085.

DOI: 10.1016/j.matdes.2013.03.085

Google Scholar

[33] Munoz-Guijosa JM, Nanaumi G, Ohtani K, Ohtake N (2017) Perpendicular ultrasonic joining of steel to aluminium alloy plates. J Mater Process Technol 243:112–122. https://doi.org/10.1016/j.jmatprotec.2016.12.010.

DOI: 10.1016/j.jmatprotec.2016.12.010

Google Scholar

[34] Eltai E, Al-Khalifa K, Al-Ryashi A, et al (2016) Investigating the corrosion under insulation (CUI) on steel pipe exposed to Arabian Gulf sea water drops. In: Key Engineering Materials. p.148–153.

DOI: 10.4028/www.scientific.net/kem.689.148

Google Scholar

[35] Alabtah FG, Mahdi E (2021) The effect of sizing optimization on the interface between high strength steel and fiber reinforced composite. Compos Struct 266:. https://doi.org/10.1016/j.compstruct.2021.113740.

DOI: 10.1016/j.compstruct.2021.113740

Google Scholar

[36] Maneiah D, Mishra D, Rao KP, Raju KB (2020) Process parameters optimization of friction stir welding for optimum tensile strength in Al 6061-T6 alloy butt welded joints. In: Materials Today: Proceedings. p.904–908.

DOI: 10.1016/j.matpr.2020.01.215

Google Scholar

[37] Wang DA, Lee SC (2007) Microstructures and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets. J Mater Process Technol 186:291–297. https://doi.org/10.1016/j.jmatprotec.2006.12.045.

DOI: 10.1016/j.jmatprotec.2006.12.045

Google Scholar

[38] Loukus A, Subhash G, Imaninejad M (2004) Mechanical properties and microstructural characterization of extrusion welds in AA6082-T4. J Mater Sci 39:6561–6569. https://doi.org/10.1023/B:JMSC.0000044896.46771.ba.

DOI: 10.1023/b:jmsc.0000044896.46771.ba

Google Scholar

[39] Lakshminarayanan AK, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. Int J Adv Manuf Technol 40:286–296. https://doi.org/10.1007/s00170-007-1325-0.

DOI: 10.1007/s00170-007-1325-0

Google Scholar

[40] Malin V (1995) Study of metallurgical phenomena in the HAZ of 6061-T6 aluminum welded joints. Weld J (Miami, Fla) 74:.

Google Scholar

[41] Ambriz RR, Froustey C, Mesmacque G (2013) Determination of the tensile behavior at middle strain rate of AA6061-T6 aluminum alloy welds. Int J Impact Eng 60:107–119. https://doi.org/10.1016/j.ijimpeng.2013.04.006.

DOI: 10.1016/j.ijimpeng.2013.04.006

Google Scholar