A FEM Analysis on the Influence of Manganese on Carbon and Chromium Macrosegregation in Large Size Steel Ingot

Article Preview

Abstract:

In this study, 3D numerical simulations were performed to study the effect of Mn on the macrosegregation behaviors of carbon and chromium in a 40 MT steel ingot using Finite Element Modeling (FEM). Two Mn contents of 0 and 5 wt.% were investigated. Thermophysical properties such as specific heat, density and phase fractions were determined using thermodynamic software Thermo-Calc®. Simulation results indicated that higher Mn content increases the carbon macrosegregation while it tends to lower the one of chromium. Moreover, it changes the solute poor band into rich one in the case of chromium and no bands were obtained for carbon. These results are analyzed in terms of the changes of thermophysical properties, interactions between alloying elements and the change in the primary solidification mode from δ-ferrite to austenite resulting from the increase of Mn concentration.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1053)

Pages:

252-257

Citation:

Online since:

February 2022

Export:

Price:

* - Corresponding Author

[1] E.J. Pickering: ISIJ International, Vol. 53 (2013) p.935.

Google Scholar

[2] A. Loucif, E. Ben Fredj, M. Jahazi, L-P. Lapierre-Boire, R. Tremblay and R. Beauvais: Proceeding of the 6th International Congress on the Science and Technology of Steelmaking (ICS2015), Beijing (China), (May 12-14, 2015) p.1043.

Google Scholar

[3] A. Loucif, D. Shahriari, C. Zhang, M. Jahazi, L-P. Lapierre-Boire and R. Tremblay: Mater. Sci. Forum, Vol. 879 (2017) p.1176.

DOI: 10.4028/www.scientific.net/msf.879.1176

Google Scholar

[4] A. Loucif, E. Ben Fredj, N. Harris, D. Shahriari, M. Jahazi and L-P. Lapierre-Boire: Metall. Mater. Trans. B, Vol. 49B (2018) p.1046.

DOI: 10.1007/s11663-018-1255-2

Google Scholar

[5] J.J. Moore and N.A. Shah: Int. Met. Rev., Vol. 28, N 06 (1983) p.338.

Google Scholar

[6] J.P. Gu and C. Beckermann: Metall. Mater. Trans. A., Vol. 30A (1999) p.1357.

Google Scholar

[7] M. C. Flemings: ISIJ International, Vol. 40 (2000) p.833.

Google Scholar

[8] J. Li, M. Wu, A. Ludwig and A. Kharicha: Int. J. Heat. Mass. Transfer., Vol. 72 (2014) p.668.

Google Scholar

[9] Z. Duan, W. Tu, B. Shen, Houfa Shen and B. Liu: Metall. Mater. Trans. A., Vol. 47A (2016) p.3597.

Google Scholar

[10] C. Zhang, D. Shahriari, A. Loucif, H. Melkonyan and M. Jahazi: Int. J. Adv. Manuf. Technol., Vol. 99 (2018) p.3035.

DOI: 10.1007/s00170-018-2695-1

Google Scholar

[11] B.K. Dhindaw, T. Antonsson, J. Tinoco and H. Fredriksson: Metall. Mater. Trans. A, Vol. 35A (2004) p.2869.

Google Scholar

[12] R.A. Higgins, in: Engineering Metallurgy, Applied Physical Metallurgy, 6th Edition, British Library Cataloguing Publication Data, Edward Arnold (1993).

Google Scholar

[13] A. Loucif, H. Touazine and M. Jahazi: Mater. Sci. Forum Vol. 941 (2018) p.2284.

Google Scholar

[14] TherCast 8.2®, Transvalor, S.A., Cedex, France.

Google Scholar

[15] Information on https://www.thermocalc.com/.

Google Scholar

[16] J. Miettinen: Metall. Mater. Trans. B., Vol. 28B (1997) p.281.

Google Scholar

[17] Information on https://scitechdaily.com/scientists-discover-structural-change-in-manganese-steel/.

Google Scholar

[18] G.E. Totten, L. Xie, K. Funatani, Handbook of mechanical alloy design, Marcel Dekker, Inc., New York Basel (2004).

Google Scholar

[19] A. Loucif, C. Zhang, M. Jahazi and L-P. Lapierre-Boire: Key Eng. Mate, Vol. 846 (2020) p.82.

Google Scholar