Forming Hexagonal and Triangular Ultrathin WS2 Shapes by Controlling the Flow of Vapor

Article Preview

Abstract:

This paper reports on the synthesis of thin films of tungsten disulfide (WS2) by сhemical vapour deposition (CVD) using powders of sulfur and tungsten oxide obtained from tungsten metal powder. It is shown that the synthesized ultra-thin 2-dimensional (2D) films of WS2 have appropriate structural and optical properties suitable for their application in the manufacturing of electronic and optoelectronic devices. Proposed method for the synthesis of 2D few-layered WS2 can significantly accelerate the synthesis rate and will make it possible to control the stoichiometry and shapes of nanocrystals by controlling the amount of sulfur by magnetic mechanism. Moreover, obtained few-layered crystals demonstrate long-term stability to external factors, since the synthesis and the research carried out during the year. During this time, no signs of degradation of the TMDs structure were detected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-160

Citation:

Online since:

December 2022

Export:

Price:

* - Corresponding Author

[1] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology. 7(11) (2012) 699-712. http: //.

DOI: 10.1038/nnano.2012.193

Google Scholar

[2] L. Li, Y. Yu, G.J. Ye, et al., Black phosphorus field-effect transistors, Nature Nanotechnology. 9 (5) (2014) 372 - 377. http: //.

Google Scholar

[3] K. Novoselov, Graphene: Mind the gap, Nat. Mater. 6 (10) (2007) 720-721. http: //.

Google Scholar

[4] T. Weitao, Electrical, electronic and optical properties of MoS2 & WS2, (2017). Theses. 12. https://digitalcommons.njit.edu/theses/12.

Google Scholar

[5] Y. Niu, S. Gonzalez-Abad, R. Frisenda, P. Marauhn, M. Drüppel, P. Gant, A. Castellanos-Gomez. Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials. 8(9) (2018) 725. http: //.

DOI: 10.3390/nano8090725

Google Scholar

[6] H. Li, Y. Shi & L. J.Li. Synthesis and optoelectronic applications of graphene/transition metal dichalcogenides flat-pack assembly. Carbon. 127 (2018) 602-610. http: //.

DOI: 10.1016/j.carbon.2017.11.030

Google Scholar

[7] D. Jariwala, V.K. Sangwan, L.J. Lauhon, Tobin J Marks, Mark C Hersam. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano. 8 (2) (2014) 1102 - 1120. http: //.

DOI: 10.1021/nn500064s

Google Scholar

[8] F. R. Sultanov, C. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Urazgaliyeva, R. Ebrahim S. S. Pei & K. P Huang. Microwave-enhanced chemical vapor deposition graphene nanoplatelets-derived 3D porous materials for oil/water separation. Carbon Letters. 30(1) (2020) 81-92. http: // DOI :10.1007/s42823-019-00073-5.

DOI: 10.1007/s42823-019-00073-5

Google Scholar

[9] B. Radisavljevic, A. Radenovic, J. Brivio, V Giacometti, A Kis. Single-layer MoS2 transistors, Nat. Nanotechnol. 6 (3) (2011) 147 - 150. http: //.

DOI: 10.1038/nnano.2010.279

Google Scholar

[10] B. H. Kim, H. Yoon, S. H. Kwon, D. W. Kim & Y. J. Yoon. Direct WS2 photodetector fabrication on a flexible substrate. Vacuum. 184 (2021) 109950. https://DOI.org/10.1016/j.vacuum.2020.109950.

DOI: 10.1016/j.vacuum.2020.109950

Google Scholar

[11] X. Lin, F. Wang, X. Shan, Y. Miao, X. Chen, M. Yan & K. Zhang. High-performance photodetector and its optoelectronic mechanism of MoS2/WS2 vertical heterostructure. Applied Surface Science. 546 (2021). 149074. https://doi.org/10.1016/j.apsusc.2021.149074.

DOI: 10.1016/j.apsusc.2021.149074

Google Scholar

[12] C. Daulbayev, F. Sultanov, B. Bakbolat & O. Daulbayev. 0D, 1D and 2D nanomaterials for visible photoelectrochemical water splitting. A review. International Journal of Hydrogen Energy, 45(58) (2020) 33325-33342. https://doi.org/10.1016/j.ijhydene.2020.09.101.

DOI: 10.1016/j.ijhydene.2020.09.101

Google Scholar

[13] C.M. Orofeo, S. Suzuki, Y. Sekine, H. Hibino, Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films, Appl. Phys. Lett. 105 (2014) 083112. http: //.

DOI: 10.1063/1.4893978

Google Scholar

[14] T.Y. Chen, Y.H. Chang, C.L. Hsu, K.H. Wei, C.Y. Chiang, L.J. Li, Comparative study on MoS2 and WS2 for electrocatalytic water splitting, Int. J. Hydrogen Energy. 38 (2013) 12302–12309. http: //.

DOI: 10.1016/j.ijhydene.2013.07.021

Google Scholar

[15] Fan, Y., Li, J., Hao, G., Luo, S., Tang, C., & Zhong, J. Synthesis, characterization of WS2 nanostructures by vapor phase deposition. Journal of Applied Physics, 117(6) (2015) 064302. http: //.

DOI: 10.1063/1.4907688

Google Scholar

[16] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi & Z. Liu. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS nano. 7(10) (2013). 8963-8971. http: //.

DOI: 10.1021/nn403454e

Google Scholar

[17] B. Shi, D. Zhou, S. Fang, K. Djebbi, S. Feng, H. Zhao & D. Wang Facile and Controllable Synthesis of Large-Area Monolayer Drop-Casted WS Substrates 2 Flakes Based by Chemical on WO3 Precursor Vapor Deposition. 2D Materials and Van der Waals Heterostructures: Physics and Applications. 69 (2020). http: //.

DOI: 10.3390/nano9040578

Google Scholar

[18] A. Shaikenova, R. Beisenov, D. Muratov. Chemical Vapor Deposition growth of WS2 crystals. Eurasian Physical Technical Journal, Vol.15, No.2(30), 2018, Karaganda, ISSN 1811-1165 (Print), ISSN 2413-2179. http://rep.ksu.kz//handle/data/5970.

Google Scholar

[19] M. Demirtaş, C. Odacı, Y. Shehu, N. K. Perkgöz & F. Ay. Layer and size distribution control of CVD-grown 2D MoS2 using ALD-deposited MoO3 structures as the precursor. Materials Science in Semiconductor Processing. 108 (2020) 104880. http: //.

DOI: 10.1016/j.mssp.2019.104880

Google Scholar

[20] C.J. Carmalt, I.P. Parkin, E.S. Peters, Atmospheric pressure chemical vapor deposition of WS2 thin films on glass, Polyhedron. 22 (2003) 1499–1505. http: //.

DOI: 10.1016/s0277-5387(03)00194-3

Google Scholar

[21] W. Zeng, L. P. Feng, J. Su, H. X. Pan & Z. T Liu. Layer-controlled and atomically thin WS2 films prepared by sulfurization of atomic-layer-deposited WO3 films. Journal of Alloys and Compounds. 745 (2018) 834-839. https://doi.org/10.1016/j.jallcom.2018.02.046.

DOI: 10.1016/j.jallcom.2018.02.046

Google Scholar

[22] R. Morrish, T. Haak, C.A. Wolden, Low-temperature synthesis of n-type WS2 thin films via H2S plasma sulfurization of WO3, Chem. Mater. 26 (13) (2014) 3986-3992. http: //.

DOI: 10.1021/cm501566h

Google Scholar

[23] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim & F. Wang. Emerging photoluminescence in monolayer MoS2. Nano letters. 10(4) (2010) 1271-1275. http: //.

DOI: 10.1021/nl903868w

Google Scholar

[24] Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu & Z. Liu. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano letters. 13(8) (2013) 3870-3877. http: //.

DOI: 10.1021/nl401938t

Google Scholar

[25] G. U. Özküçük, C. Odacı, E. Şahin, F. Ay & N. K. Perkgöz. Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate. Materials Science in Semiconductor Processing. 105 (2020) 104679. https://doi.org/10.1016/j.mssp.2019.104679.

DOI: 10.1016/j.mssp.2019.104679

Google Scholar

[26] S. Yeo, D. K. Nandi, R. Rahul, T. H. Kim, B. Shong, Y. Jang & H. Kim. Low-temperature direct synthesis of high quality WS2 thin films by plasma-enhanced atomic layer deposition for energy related applications. Applied Surface Science. 459 (2018) 596-605. https://doi.org/10.1016/j.apsusc.2018.07.210.

DOI: 10.1016/j.apsusc.2018.07.210

Google Scholar

[27] B. Zheng & Y. Chen. Controllable growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. In IOP conference series: materials science and engineering. 274(1) (2017) 012085. IOP Publishing.

DOI: 10.1088/1757-899x/274/1/012085

Google Scholar

[28] Y. Yin, F. Ren, Y.Wang, Z. Liu, J. Ao, M. Liang, J. Li. Direct van der Waals epitaxy of crack-free AlN Thin film on epitaxial WS2. Materials. 11(12) (2018) 2464. http: //.

DOI: 10.3390/ma11122464

Google Scholar

[29] Y. Yu, P. W. Fong, S. Wang & C. Surya Fabrication of WS2/GaN PN Junction by Wafer-Scale WS2 Thin Film Transfer. Scientific reports. 6(1) (2016) 1 - 11. http: //.

DOI: 10.1038/srep37833

Google Scholar

[30] G. Nazir, M. F. Khan, V. M. Iermolenko & J. Eom. Two-and four-probe field-effect and Hall mobilities in transition metal dichalcogenide field-effect transistors.RSC Advances. 6(65) (2016) 60787-60793. http: //.

DOI: 10.1039/c6ra14638d

Google Scholar

[31] A.L. Elías, N. Perea-Lopez, A. Castro-Beltran, et al., Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers, ACS Nano. 7 (6) (2013) 5235-5242. http: //.

DOI: 10.1021/nn400971k

Google Scholar

[32] N.Liu, F. Fan, W. Xu, H. Zhang, Q. Zhou & X. Li. (2021). Synthesis of functional hollow WS2 particles with large surface area for Near-Infrared (NIR) triggered drug delivery. Journal of Alloys and Compounds, 875, 160034. https://doi.org/10.1016/j.jallcom.2021.160034.

DOI: 10.1016/j.jallcom.2021.160034

Google Scholar

[33] A. Shaikenova, R. Beisenov, D. Muratov. Studying the mechanism of graphene formation by Chemical Vapor Deposition synthesis. Eurasian Physical Technical Journal, Vol.15, No.2(30), (2018) Karaganda, ISSN 1811-1165 (Print), ISSN 2413-2179. http://rep.ksu.kz//handle/data/5971.

Google Scholar

[34] SiO2 Color Chart for thermally grown silicon dioxide HTE Labs. http://www.htelabs.com/appnotes/sio2_color_chart_thermal_silicon_dioxide.htm/, 2022 (accessed 30 March 2022).

Google Scholar

[35] ICDD (PDF-2 Release 2016 RDB) (01-083-0950).

Google Scholar

[36] ICDD (PDF-2 Release 2016 RDB 00-008-0237) (00-035-0651).

Google Scholar

[37] B. Mahler, V. Hoepfner, K. Liao & G. A. Ozin. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. Journal of the American Chemical Society, 136(40) (2014) 14121-14127. http: //.

DOI: 10.1021/ja506261t

Google Scholar

[38] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang & G. Eda. Lattice dynamics in mono-and few-layer sheets of WS2 and Wse2. Nanoscale. 5(20) (2013) 9677-9683. http: //.

DOI: 10.1039/c3nr03052k

Google Scholar

[39] S. M. Shinde, K. P. Dhakal, X. Chen, W. S. Yun, J. Lee, H. Kim & J. H. Ahn. Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Materials. 10(2) (2018) 468 - 468. http: //.

DOI: 10.1038/am.2017.226

Google Scholar

[40] L. Dong, Y. Wang, J. Sun, C. Pan, Q. Zhang, L. Gu. & J. Zhang. Facile access to shape-controlled growth of WS2 monolayer via environment-friendly method. 2D Materials. 6(1) (2018) 015007. http: //.

DOI: 10.1088/2053-1583/aae7eb

Google Scholar

[41] S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko & A. F Morpurgo. Mono-and bilayer WS2 light-emitting transistors. Nano letters. 14(4) (2014) 2019-2025. http: //.

DOI: 10.1021/nl500171v

Google Scholar