[1]
I. E. Agency, Net-Zero by 2050- A Roadmap for the Global Energy Sector., (2021).
Google Scholar
[2]
C. Fabiani, A. L. Pisello, and H. Paksoy, Novel Building Materials. 2–5 (2018) 980–1017.
DOI: 10.1016/b978-0-12-809597-3.00257-1
Google Scholar
[3]
B. C. J. Newman, Advanced Concrete Technology., Great Britain, (2003).
Google Scholar
[4]
D. B. Nadjia, The environmental dimension in building: New challenges, International journal of legal and political research. 5-1 (2021) 512–529. (In French).
Google Scholar
[5]
R. Demirboǧa, Influence of mineral admixtures on thermal conductivity and compressive strength of mortar, Energy Build, 35 (2003) 189–192.
DOI: 10.1016/s0378-7788(02)00052-x
Google Scholar
[6]
M. Hamadache, M. Mouli, N. Bouhamou, A. S. Benosman, O. Chaib, and F. Dif, Characterization of pozzolanic additions in the mortar for building energy efficiency, J. Mater. Eng. Struct, 7-2 (2016) 416–421.
DOI: 10.4028/www.scientific.net/amr.1064.42
Google Scholar
[7]
Á. Cseh, G. L. Balázs, M. Kekanović, and I. M. Miličić, Effect of SCMs on heat transfer properties of LWAC, J. Therm. Anal. Calorim., 144- 4 (2021) 1095–1108.
DOI: 10.1007/s10973-020-09631-w
Google Scholar
[8]
V. Francioso, C. Moro, and M. Velay-Lizancos, Effect of recycled concrete aggregate (RCA) on mortar's thermal conductivity susceptibility to variations of moisture content and ambient temperature, J. Build. Eng., 43 (2021) 103208.
DOI: 10.1016/j.jobe.2021.103208
Google Scholar
[9]
A. Semcha, Valorisation of dredging sediments: Application in construction and public works, Fergoug dam case, Thesis., Mostaganem, Algeria, 2006. (In French).
Google Scholar
[10]
O. Safer, N. Belas, O. Belaribi, K. Belguesmia, N. E. Bouhamou, and A. Mebrouki, Valorization of Dredged Sediments as a Component of Vibrated Concrete: Durability of These Concretes Against Sulfuric Acid Attack, Int. J. Concr. Struct. Mater, 12-1 (2018).
DOI: 10.1186/s40069-018-0270-7
Google Scholar
[11]
O. Belaribi, Durability of Self Compacting Concretes based on the mud and pozzolan, Thesis., Mostaganem, Algeria, 2015. (In French).
Google Scholar
[12]
K. Belguesmia, N. Belas, O. Amiri, and N. Leklou, Influence of treated sediment substitution percentage on workability, strength, and porosity of SCC, J. Mater. Eng. Struct, 5 (2018) 47–55. (In French).
Google Scholar
[13]
T. Fatima, Contribution to the Study of the Shrinkage of Equivalent Self-Consolidating Concrete Mortars Based on Dredged Sediment, Thesis., Mostaganem, Algeria, 2019. (In French).
Google Scholar
[14]
R. Hadj Sadouk, Life cycle analysis of dredged sediments, Thesis., Mostaganem, Algeria, 2019. (In French).
Google Scholar
[15]
O. Safer, N. Belas, O. Belaribi, K. Belguesmia, and F. Taieb, Resistance of concrete based on treated mud to seawater attack, J. Mater. Eng. Struct, 8 (2021) 111–121.
Google Scholar
[16]
R. Hadj Sadok, N. Belas, M. Tahlaiti, and R. Mazouzi, Reusing calcined sediments from Chorfa II dam as partial replacement of cement for sustainable mortar production, J. Build. Eng, 40 (2021) 102273.
DOI: 10.1016/j.jobe.2021.102273
Google Scholar
[17]
B. Remini, Algeria: The Mud At The Bottom Of The Dams, What To Do?, Larhyss J, 40 (2019) 213–247.
Google Scholar
[18]
MG. Gomes, I. Flores-Colen, F. Da Silva, M. Pedroso, Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods, J. Const. Build. Mater, 172 (2018) 696–705. doi.org/10.1016/j.conbuildmat.2018.03.162.
DOI: 10.1016/j.conbuildmat.2018.03.162
Google Scholar
[19]
NA 442, Composition, specifications and conformity criteria of common cement., Algerian Standard, (2003).
Google Scholar
[20]
NF EN 197-1, Composition, specifications and conformity criteria of common cement., AFNOR, European standard, (2012).
Google Scholar
[21]
NF P 18-545, Aggregates - defining elements, conformity and coding., AFNOR, European Standard, (2011).
Google Scholar
[22]
NF EN 196-1, Méthods of testing cement., AFNOR, European Standard, (2016).
Google Scholar
[23]
NF P 18-452, Concretes — Measuring the flow time of concretes and mortars using a workabilitymeter., AFNOR, European Standard, (2017).
Google Scholar
[24]
NF P15-437, Hydraulic binders - Testing technics - Characterization of cement by fluidity measurement under mortar vibration., AFNOR, European Standard, (1987).
Google Scholar
[25]
NF EN 12390-7, Testing hardened concrete - Part 7: Density of hardened concrete., AFNOR, European Standard, (2019).
Google Scholar
[26]
D.Taoukil, Y. El meski, M.Lahlaouti, lhassane, R.Djedjig, & A.El bouardi, Effect of the use of diatomite as partial replacement of sand on thermal and mechanical properties of mortars. Journal of Building Engineering, 42 (2021) 103038.https://doi.org/10.1016/j.jobe.2021.103038.
DOI: 10.1016/j.jobe.2021.103038
Google Scholar
[27]
C642-06, Standard Method for Density, Absorption, and Voids in Hardened Concrete., ASTM, United States of America Standard, (2008).
Google Scholar
[28]
R. A.Maria, N.Sakthieswaran, O. G. Babu, &K. K.Gaayathri, Effect of micro silica and ground granulated blast furnace slag on performance of rubberized mortar. In: Proceedings Materials Today, Edited by Vijayan V, Lee Chang Chuan, The Elsevier Journal, 37 (2021) 1014–1018. https://doi.org/10.1016/j.matpr.2020.06.278.
DOI: 10.1016/j.matpr.2020.06.278
Google Scholar
[29]
ISO8302-91, Thermal insulation, determination of thermal resistance guarded hot plate method., Model ISOMET 2104, Heat Transfer Analyzer, 1991. (In French).
Google Scholar