18Ni300 Maraging Steel Produced via Direct Energy Deposition on H13 Tool Steel and DIN CK45

Article Preview

Abstract:

The quality of metallic additive manufacturing outputs is heavily dependent on the employed processing parameters. Hence, the assessment and definition of the input variables appropriate to the material in question is of vital importance, in order to optimise the attainable properties and minimise wasted feed stock in failed trials. In this work, optimal parameters for 18Ni300 Maraging steel are found for deposition in an H13 substrate. Additinally, the influence of pre-heating in depositions on a DIN CK45 steel are analysed by optical microscopy (OM) and microhardness measurements along the interface, and mechanical characterisation of DED-produced 18Ni300 is performed, as well as a bi-metallic alloy comprised of 18Ni300 and CK45, through the production and testing of tensile specimens.

You have full access to the following eBook

Info:

Periodical:

Pages:

194-205

Citation:

Online since:

July 2022

Export:

* - Corresponding Author

[1] T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, T. Elmer, J. O. Milewski, A. M. Beese, A. M. Wilson-Heid, W. Zhang. Additive Manufacturing of Metallic Components - Process, Structure and Properties. Progress in Materials Science Vol. 92 (2017), pp.112-224.

DOI: 10.1016/j.pmatsci.2017.10.001

Google Scholar

[2] S. M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi. An overview of Direct Laser Deposition for additive manufacturing: Part I: Transport phenomena, modeling and diagnostics. Additive Manufacturing Vol. 8 (2015), pp.37-59.

DOI: 10.1016/j.addma.2015.07.001

Google Scholar

[3] E. Toyserkani, A. Khajepour, S. Corbin, in: Laser Cladding. Publications/CRC Press, Boca Raton (2005).

Google Scholar

[4] P. Beeley, in: Foundry Technology, Publications/Butterworth-Heinemann, Oxford (2001)[5] C. Turk, H. Zunko, C. Aumayr, H. Leitner, and M. Kapp. 2019. Advances in Maraging Steels for Additive Manufacturing. BHM Berg-und Hüttenmännische Monatshefte, Vol. 164(3) (2019), pp.112-116.

DOI: 10.1007/s00501-019-0835-z

Google Scholar

[6] voestalpine BÖHLER Edelstahl GmbH & Co KG, BÖHLER M789 AMPO Product Data Sheet, (2018).

Google Scholar

[7] C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu, and T. Kuang. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel.Materials & Design Vol. 134 (2017), pp.23-34.

DOI: 10.1016/j.matdes.2017.08.026

Google Scholar

[8] K. Kempen, E. Yasa, L. Thijs, J. P. Kruth, J.K. Van Humbeeck. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel. Physics Procedia Vol. 12 (2011), pp.255-263.

DOI: 10.1016/j.phpro.2011.03.033

Google Scholar

[9] C. Félix-Martinez, J. Ibarra-Medina, D. A. Fernández-Benavides, L.A. Cácerez-Díaz, J. M. Alvarado-Orozco. Effect of the parametric optimization and heat-treatment on the 18Ni-300 maraging steel microstructural properties manufactured by directed energy deposition. The International Journal of Advanced Manufacturing Technology Vol. 115 (2021), 3999-4020.

DOI: 10.1007/s00170-021-07320-y

Google Scholar

[10] P. Kürnsteiner, M. Wilms, A. Weisheit, P. Barriobero-Vila, E. Jägle, D. Raabe. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition Vol. 129 (2017), pp.52-60.

DOI: 10.1016/j.actamat.2017.02.069

Google Scholar

[11] voestalpine BÖHLER Edelstahl GmbH & Co KG, BÖHLER W722 AMPO Product Data Sheet, (2018).

Google Scholar

[12] Ferreira, A., Amaral, R., Romio, P., Cruz, J., Reis, A., Vieira, M., . Deposition of nickel-based superalloy claddings on low alloy structural steel by direct energy deposition, Metals Vol. 11(8) (2021), p.1326.

DOI: 10.3390/met11081326

Google Scholar

[13] A. Dass, A. Moridi, 2019. From additive manufacturing to materials design, Coatings Vol. 9(7) (2019), pp.1-26.

Google Scholar

[14] S. Alya, C. Vundru, B. Ankamreddy and R. K. Singh Characterization and modeling of deposition geometry in directed energy deposition over inclined surfaces. Procedia Manufacturing Vol. 34 (2019), pp.695-703.

DOI: 10.1016/j.promfg.2019.06.225

Google Scholar

[15] V.Ocelík, U. de Oliveira, M.de Boer, J.Th.M.de Hosson. Thick Co-based coating on cast iron by side laser cladding: Analysis of processing conditions and coating properties. Surface and Coatings Technology Vol. 201(12) (2007), pp.5875-5883.

DOI: 10.1016/j.surfcoat.2006.10.044

Google Scholar

[16] R. Fang, N. Deng, H. Zhang, G. Wang, Y. Su, H. Zhou, K. Gao, L. Gu. Effect of selective laser melting process parameters on the microstructure and properties of a precipitation hardening stainless steel. Materials & Design Vol. 212 (2021), pp.1-14.

DOI: 10.1016/j.matdes.2021.110265

Google Scholar