Organosilica Multichannel Membranes Prepared by Inner Coating Method Applied for Brackish Water Desalination

Article Preview

Abstract:

A sol-gel method has been widely utilized for membrane fabrication due to low temperatures requirement and high purity. In the application of potable water production, membrane technology also plays an important role applied for brackish water treatment. This study aims to develop a multichannel membrane through an inner coating method and then to demonstrate the membrane performance for brackish water desalination. Two type of organosilica multichannel membranes were fabricated by mixing TEOS as a silica precursor using citric acid catalyst via sol-gel method and pectin as carbon templated. The multichannel membranes were inner-coated up 4 layers and calcined at 175 °C for organosilica multichannel membrane and 300 °C for silica-pectin multichannel membranes in vacuum condition. From FTIR results indicated that organosilica and silica-pectin multichannel membranes show siloxane (Si-O-Si), silanol (Si-OH) and silica-carbon (Si-C) groups. In addition, the organosilica multichannel membrane performed the water flux of 15.74 kg.m-2.h-1and salt rejection of 99.77%, where the silica pectin multichannel membrane performed the lower performance compare to organosilica multichannel membrane (water flux: 11.44 kg.m-2.h-1 and salt rejection: 99.48%). In conclusion, the organosilica multichannel membrane derived from citric acid as catalyst has a better performance compare to organosilica multichannel membrane derived from pectin applied for brackish water treatment. Keywords: organosilica multichannel membrane, inner coating, brackish water treatment

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1057)

Pages:

136-143

Citation:

Online since:

March 2022

Export:

Price:

* - Corresponding Author

[1] Y. Zhou et al., Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling,, Science, vol. 349, no. 6250, pp.873-876, (2015).

DOI: 10.1126/science.aaa5619

Google Scholar

[2] E. Pradhana et al., The Functionalization Study of PVDF/TiO2 Hollow Fibre Membranes Under Vacuum Calcination Exposure,, in Journal of Physics: Conference Series, 2021, vol. 1912, no. 1: IOP Publishing, p.012035.

DOI: 10.1088/1742-6596/1912/1/012035

Google Scholar

[3] E.L.A. Rampun, M. Elma, A. Rahma, and A.E. Pratiwi, Interlayer-free silica–pectin membrane for sea-water desalination,, Membrane Technology, vol. 2019, no. 12, pp.5-9, 2019/12/01/ (2019).

DOI: 10.1016/s0958-2118(19)30222-8

Google Scholar

[4] A.E. Pratiwi, M. Elma, A. Rahma, E. L. A. Rampun, and G. S. Saputro, Deconvolution of pectin carbonised template silica thin-film: synthesis and characterisation,, Membrane Technology, vol. 2019, no. 9, pp.5-8, 2019/09/01/ (2019).

DOI: 10.1016/s0958-2118(19)30167-3

Google Scholar

[5] A. Rahma, M. Elma, E. L. A. Rampun, A. E. Pratiwi, A. Rakhman, and Fitriani, Rapid Thermal Processing and Long Term Stability of Interlayer-free Silica-P123 Membranes for Wetland Saline Water Desalination,, Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 71, no. 2, pp.1-9, July 2020 2020, Art no. 1.

DOI: 10.37934/arfmts.71.2.19

Google Scholar

[6] A. Rahma, M. Elma, A. E. Pratiwi, and E. L. Rampun, Performance of interlayer-free pectin template silica membranes for brackish water desalination,, Membrane Technology, vol. 2020, no. 6, pp.7-11, (2020).

DOI: 10.1016/s0958-2118(20)30108-7

Google Scholar

[7] M. Elma et al., Combination of Coagulation, Adsorption, and Ultrafiltration Processes for Organic Matter Removal from Peat Water,, Sustainability, vol. 14, no. 1, p.370, (2022).

DOI: 10.3390/su14010370

Google Scholar

[8] M. Elma, N. L. Sari, and D. A. Pratomo, Organo-Silica Membrane Technology for Quarry acid water desalination,, Konversi, vol. 8, (2019).

Google Scholar

[9] A. Sumardi et al., Designing a mesoporous hybrid organo-silica thin film prepared from an organic catalyst,, Membrane Technology, vol. 2021, no. 2, pp.5-8, (2021).

DOI: 10.1016/s0958-2118(21)00029-x

Google Scholar

[10] F.R. Mustalifah, A. Rahma, Mahmud, Sunardi, and M. Elma, Chemical cleaning to evaluate the performance of silica-pectin membrane on acid mine drainage desalination,, IOP Conference Series: Materials Science and Engineering, vol. 1195, no. 1, p.012057, 2021/10/01 (2021).

DOI: 10.1088/1757-899x/1195/1/012057

Google Scholar

[11] N. Huda, E. Lulu Atika Rampun, R. Ayu Lestari, Y. Raharjo, D. Heri Yuli Yanto, and M. Elma, Membrane pervaporation performance applied for brackish water prepared by vacuum impregnation method,, IOP Conference Series: Materials Science and Engineering, vol. 1195, no. 1, p.012056, 2021/10/01 (2021).

DOI: 10.1088/1757-899x/1195/1/012056

Google Scholar

[12] N.N.A.N. Razak et al., Finned spacer for enhancing the impact of air bubbles for membrane fouling control in Chlorella vulgaris filtration,, Bioresource Technology Reports, vol. 11, p.100429, (2020).

DOI: 10.1016/j.biteb.2020.100429

Google Scholar

[13] D.K. Wang et al., Physicochemical and photocatalytic properties of carbonaceous char and titania composite hollow fibers for wastewater treatment,, Carbon, vol. 109, pp.182-191, 2016/11/01/ (2016).

DOI: 10.1016/j.carbon.2016.08.001

Google Scholar

[14] M.C. Duke, J.D. Da Costa, D. D. Do, P.G. Gray, and G.Q. Lu, Hydrothermally robust molecular sieve silica for wet gas separation,, Advanced Functional Materials, vol. 16, no. 9, pp.1215-1220, (2006).

DOI: 10.1002/adfm.200500456

Google Scholar

[15] S. Wijaya, M. Duke, and J.D. da Costa, Carbonised template silica membranes for desalination,, Desalination, vol. 236, no. 1-3, pp.291-298, (2009).

DOI: 10.1016/j.desal.2007.10.079

Google Scholar

[16] M. Elma et al., Carbon templated strategies of mesoporous silica applied for water desalination: A review,, Journal of Water Process Engineering, vol. 38, p.101520, 2020/12/01/ (2020).

DOI: 10.1016/j.jwpe.2020.101520

Google Scholar

[17] M. Elma, A. E. Lestari, and S. Rabiah, Fabrication Of Silica Thin Film Using Organic Catalyst As Inorganic Membrane Coatings,, Konversi, vol. 7, no. 2, pp.62-66, (2018).

Google Scholar

[18] M. Elma and H. Setyawan, Synthesis of Silica Xerogels Obtained in Organic Catalyst via Sol Gel Route,, in IOP Conference Series: Earth and Environmental Science, 2018, vol. 175, no. 1: IOP Publishing, p.012008.

DOI: 10.1088/1755-1315/175/1/012008

Google Scholar

[19] M. Elma, N. Riskawati, and Marhamah, Silica Membranes for Wetland Saline Water Desalination: Performance and Long Term Stability,, IOP Conference Series: Earth and Environmental Science, vol. 175, no. 1, p.012006, (2018).

DOI: 10.1088/1755-1315/175/1/012006

Google Scholar

[20] M. Elma, Hairullah, and Z. L. Assyaifi, Desalination Process via Pervaporation of Wetland Saline Water,, in IOP Conference Series: Earth and Environmental Science, 2018, vol. 175, no. 1: IOP Publishing, p.012009.

DOI: 10.1088/1755-1315/175/1/012009

Google Scholar

[21] M. Elma, A. E. Pratiwi, E. L. Rampun, and A. Rahmah, Application of Interlayer-Free Silica-Pectin Membrane in Brackish Water Treatment and Salt marsh water, ,Proceedings of Wetland Environment Seminar, vol. 4(2), pp.268-273, (2019).

DOI: 10.1016/s0958-2118(20)30108-7

Google Scholar

[22] S. K. Rahman, Maimunawaro, A. Rahma, S. Isna, and M. Elma, Functionalization of hybrid organosilica based membranes for water desalination – Preparation using Ethyl Silicate 40 and P123,, Materials Today: Proceedings, 2020/01/31/ (2020).

DOI: 10.1016/j.matpr.2020.01.187

Google Scholar

[23] R. A. Lestari et al., Organo Silica Membranes for Wetland Saline Water Desalination: Effect of membranes calcination temperatures,, E3S Web Conf., vol. 148, p.07006, (2020).

DOI: 10.1051/e3sconf/202014807006

Google Scholar

[24] M. Elma, Fitriani, A. Rakhman, and R. Hidayati, Silica P123 Membranes for Desalination of Wetland Saline Water in South Kalimantan,, in IOP Conference Series: Earth and Environmental Science, 2018, vol. 175, no. 1: IOP Publishing, p.012007.

DOI: 10.1088/1755-1315/175/1/012007

Google Scholar

[25] Z. L. Assyaifi et al., Photocatalytic–pervaporation using membranes based on organo-silica for wetland saline water desalination,, Membrane Technology, vol. 2021, no. 7, pp.7-11, (2021).

DOI: 10.1016/s0958-2118(21)00109-9

Google Scholar

[26] M. Yue, S. Zhao, P. H. Feron, and H. Qi, Multichannel tubular ceramic membrane for water and heat recovery from waste gas streams,, Industrial & Engineering Chemistry Research, vol. 55, no. 9, pp.2615-2622, (2016).

DOI: 10.1021/acs.iecr.6b00242

Google Scholar

[27] L. Kreethawate, S. Larpkiattaworn, S. Jiemsirilers, L. Besra, and T. Uchikoshi, Application of electrophoretic deposition for inner surface coating of porous ceramic tubes,, Surface and Coatings Technology, vol. 205, no. 7, pp.1922-1928, (2010).

DOI: 10.1016/j.surfcoat.2010.08.069

Google Scholar

[28] V. MATĚJEC et al., Properties of optical fiber preforms prepared by inner coating of substrate tubes,, Ceramics− Silikáty, vol. 45, no. 2, pp.62-69, (2001).

Google Scholar

[29] M. Elma, D. K. Wang, C. Yacou, and J. C. D. da Costa, Interlayer-free P123 carbonised template silica membranes for desalination with reduced salt concentration polarisation,, Journal of Membrane Science, vol. 475, pp.376-383, (2015).

DOI: 10.1016/j.memsci.2014.10.026

Google Scholar

[30] M. Elma, C. Yacou, D. K. Wang, S. Smart, and J. C. Diniz da Costa, Microporous silica based membranes for desalination,, Water, vol. 4, no. 3, pp.629-649, (2012).

DOI: 10.3390/w4030629

Google Scholar

[31] D. R. Eddy, A. R. Noviyanti, and D. Janati, Sintesis Silika Metode Sol-Gel Sebagai Penyangga Fotokatalis Tio2 Terhadap Penurunan Kadar Kromium Dan Bes,, Jurnal Sains Materi Indonesia, vol. 17, no. 2, p.82, (2018).

Google Scholar

[32] M. Elma et al., Development of Hybrid and Templated Silica-P123 Membranes for Brackish Water Desalination,, Polymers, vol. 12, no. 11, p.2644, (2020).

DOI: 10.3390/polym12112644

Google Scholar

[33] M. Elma, Organo Silica Membranes for Wetland Saline Water Desalination: Effect of membranes calcination temperatures,, (2020).

Google Scholar

[34] D. K. Wang, J. C. D. da Costa, and S. Smart, Development of rapid thermal processing of tubular cobalt oxide silica membranes for gas separations,, Journal of membrane science, vol. 456, pp.192-201, (2014).

DOI: 10.1016/j.memsci.2014.01.014

Google Scholar

[35] M. Elma, D. K. Wang, C. Yacou, J. Motuzas, and J. C. D. da Costa, High performance interlayer-free mesoporous cobalt oxide silica membranes for desalination applications,, Desalination, vol. 365, pp.308-315, (2015).

DOI: 10.1016/j.desal.2015.02.034

Google Scholar

[36] M. Elma et al., Physicochemical Properties of Mesoporous Organo-Silica Xerogels Fabricated through Organo Catalyst,, Membranes, vol. 11, no. 8, p.607, (2021).

DOI: 10.3390/membranes11080607

Google Scholar

[37] M. Elma, H. Setyawan, A. Rahma, A. Pratiwi, and E. L. A. Rampun, Fabrication of Interlayer-free P123 Caronised Template Silica Membranes for Water Desalination: Conventional Versus Rapid Thermal Processing (CTP vs RTP) Techniques,, in IOP Conference Series: Materials Science and Engineering, 2019, vol. 543, no. 1: IOP Publishing, p.012076.

DOI: 10.1088/1757-899x/543/1/012076

Google Scholar