Synthesis and Characterization of Sol-Gel Derived Strontium Doped S53P4 Bioglass

Article Preview

Abstract:

This study concerns the evaluation of the bioactivity and cells response of strontium (Sr) doped sol-gel derived S53P4 bioglass due to Sr induced osteoblast. Moreover it prevents in-vitro osteoclastic activity and is clinically used as osteoporosis treatment. The different amount of Sr was doped into the S53P4 bioglass formulation (53.82%SiO2-1.72%P2O5-22.64%Na2O-(21.76-x)%CaO-x%SrO) (x=0, 3 and 5 mol %) and synthesized via sol-gel method. These samples were denoted as 0Sr, 3Sr and 5Sr respectively. After soaking in Hank's balanced salt solution (HBSS) for 7 and 14 days, the apatite formation was examined using X-ray powder diffraction (XRD) and scanning electron microscope (SEM) techniques. Proliferation and alkaline phosphatase activity were evaluated using osteoblastic cell line MC3T3-E1. The XRD and SEM findings confirmed the hydroxyapatite (HA) structure on the bioglass surface after soaking. More intense HA peaks were observed in 3Sr specimen on 7 day while in 5Sr specimen on 14 day. Meanwhile, 3Sr specimen showed the highest cells proliferation and ‌ significant difference in alkaline phosphatase (ALP) activity than 0Sr and 5Sr. As a result, this finding indicates that S53P4 bioglass with 3 mol % SrO (3Sr) is a good candidate for bone tissue engineering because it allows for optimum cell proliferation and ALP activity while also having a high bioactivity efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-147

Citation:

Online since:

January 2022

Export:

Price:

* - Corresponding Author

[1] A.C. Profeta, C. Huppa, Bioactive-glass in Oral and Maxillofacial Surgery, Craniomaxillofacial trauma & reconstruction. 9 (2016) 1-14.

DOI: 10.1055/s-0035-1551543

Google Scholar

[2] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, J Appl Biomater. 2 (1991) 231-9.

DOI: 10.1002/jab.770020403

Google Scholar

[3] F. Baino, G. Novajra, V. Miguez-Pacheco, A.R. Boccaccini, C. Vitale-Brovarone, Bioactive glasses: special applications outside the skeletal system, J Non·Cryst Solids. 432 (2016) 15-30.

DOI: 10.1016/j.jnoncrysol.2015.02.015

Google Scholar

[4] J.R. Jones, Reprint of: Review of bioactive glass: From Hench to hybrids, Acta Biomater. 23 (2015) S53-S82.

DOI: 10.1016/j.actbio.2015.07.019

Google Scholar

[5] F. Sharifianjazi, M. Moradi, A. Abouchenari, A.H. Pakseresht, A. Esmaeilkhanian, M. Shokouhimehr, M.S. Asl, Effects of Sr and Mg dopants on biological and mechanical properties of SiO2–CaO–P2O5 bioactive glass, Ceram Int. (2020).

DOI: 10.1016/j.ceramint.2020.06.030

Google Scholar

[6] S. Solgi, M. Khakbiz, M. Shahrezaee, A. Zamanian, M. Tahriri, S. Keshtkari, M. Raz, K. Khoshroo, S. Moghadas, A. Rajabnejad, Synthesis, characterization and in vitro biological evaluation of sol-gel derived sr-containing nano bioactive glass, Silicon. (2015) 1-8.

DOI: 10.1007/s12633-015-9291-x

Google Scholar

[7] T.T. Swe, K.A. Shariff, H. Mohamad, K. Ishikawa, K. Hayashi, M.H.A. Bakar, Behavioural response of cells and bacteria on single and multiple doped Sr and Ag S53P4 sol-gel bioglass, Ceram Int. (2020).

DOI: 10.1016/j.ceramint.2020.04.094

Google Scholar

[8] International Organization for Standardization. Implants for Surgery: In Vitro Evaluation for Apatite-forming Ability of Implant Materials: ISO Copyright Office; (2012).

Google Scholar

[9] L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant, A. Govin, Structural transformations of bioactive glass 45S5 with thermal treatments, Acta Mater. 55 (2007) 3305-13.

DOI: 10.1016/j.actamat.2007.01.029

Google Scholar

[10] Q.-Z. Chen, Y. Li, L.-Y. Jin, J.M. Quinn, P.A. Komesaroff, A new sol–gel process for producing Na2O-containing bioactive glass ceramics, Acta Biomater. 6 (2010) 4143-53.

DOI: 10.1016/j.actbio.2010.04.022

Google Scholar

[11] K. Fujikura, N. Karpukhina, T. Kasuga, D. Brauer, R. Hill, R. Law, Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5, J Mater Chem. 22 (2012) 7395-402.

DOI: 10.1039/c2jm14674f

Google Scholar

[12] V. Kahlenberg, Preparation and crystal structure of Na2SrSi2O6—a cyclosilicate with perovskite-type features, J Alloys Compd. 366 (2004) 132-5.

DOI: 10.1016/s0925-8388(03)00727-8

Google Scholar

[13] Q.X. Zhu, Q.Y. Nie, Effect of Carbonate Substitution on the Biomineralization of Apatite Bulk and Coating, Trans Tech Publ. Key Eng Mater; 807 (2019) 87-93.

DOI: 10.4028/www.scientific.net/kem.807.87

Google Scholar

[14] A. Moghanian, S. Firoozi, M. Tahriri, Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceram Int. 43 (2017) 14880-90.

DOI: 10.1016/j.ceramint.2017.08.004

Google Scholar

[15] F. Sharifianjazi, N. Parvin, M. Tahriri, Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses, Ceram Int. 43 (2017) 15214-20.

DOI: 10.1016/j.ceramint.2017.08.056

Google Scholar

[16] Z. Amjad, P. Koutsoukos, G. Nancollas, The crystallization of hydroxyapatite and fluorapatite in the presence of magnesium ions, J Colloid Interface Sci. 101 (1984) 250-6.

DOI: 10.1016/0021-9797(84)90025-0

Google Scholar