A Review of some Characteristics of a Composite Hybrid Socket for Prosthetics Derived from Plant Fibers

Article Preview

Abstract:

According to the ICF (International Classification of Functioning, Disability, and Health), a prosthetic is a device used to restore or replace the function of a missing limb as a result of a rare genetic defect, dangerous incident, surgical trauma, or disease that limits the amputee's ability to participate in daily life. Prosthetic limb sockets were formerly made out of a wide variety of materials before the development of thermoplastics and composites. Plant fibers are favored due to their low density. Both their strength and rigidity are remarkably high considering their low weight and inexpensiveness. Plant fiber is one of the most popular ways to give polymer composites more strength because of its low production costs and stretchability. Following a brief introduction to the many types of natural fibers (both plant and animal), this article provides a comprehensive assessment of the literature from the past decade that focuses on the mechanical characteristics of plant materials. Reinforced polymers are made with fibers. This literature study will focus on the mechanical properties and behavior of plant fibers used to create sockets for prosthetic limbs. If an article is written about the overall features of composites made with fibers made from the plant, it is expected to be of great use to the research community in the field of composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-106

Citation:

Online since:

December 2022

Export:

Price:

* - Corresponding Author

[1] J.K. Oleiwi, Q.A. Hamad, S.A. Abdulrahman, Flexural, impact and max. shear stress properties of fibers composite for the prosthetic socket, Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2021.12.368.

DOI: 10.1016/j.matpr.2021.12.368

Google Scholar

[2] J.K. Oleiwi, Q.A. Hamad, S.A. Abdulrahman, Comparative Study of Polymeric Laminated Composites Reinforced by Different Fibers of Prosthetic Socket by DSC and FTIR, Key Eng. Mater. 911 (2022) 3–8. https://doi.org/10.4028/p-ju39wm.

DOI: 10.4028/p-ju39wm

Google Scholar

[3] A.N. Amsan, A.K. Nasution, M.H. Ramlee, A Short Review on the Cost, Design, Materials, and Challenges of the Prosthetics Leg Development and Usage, in 2019. https://doi.org/10.2991/iccelst-st-19.2019.12.

DOI: 10.2991/iccelst-st-19.2019.12

Google Scholar

[4] S.R. Mousavi, M.H. Zamani, S. Estaji, M.I. Tayouri, M. Arjmand, S.H. Jafari, S. Nouranian, H.A. Khonakdar, Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies, J. Mater. Sci. 57 (2022). https://doi.org/https://dx.doi.org/10.1007/s10853-021-06854-6.

DOI: 10.1007/s10853-021-06854-6

Google Scholar

[5] J. Andrysek, Lower-limb prosthetic technologies in the developing world: A review of literature from 1994-2010, Prosthet. Orthot. Int. 34 (2010) 378–398. https://doi.org/10.3109/03093646.2010.520060.

DOI: 10.3109/03093646.2010.520060

Google Scholar

[6] B.A. Bedaiwl, J.S. Chiad, Vibration analysis and measurement in the below knee prosthetic limb part I : Experimental work, ASME Int. Mech. Eng. Congr. Expo. Proc. 2 (2012) 851–858. https://doi.org/10.1115/IMECE2012-85811.

DOI: 10.1115/imece2012-85811

Google Scholar

[7] D. Felix, T. Selim, C. Trivedi, E. Wenzlaff, S. Guceri, Y. Mendelson, Designing a Dynamic Prosthetic Socket for Transtibial Amputees A Major Qualifying Project Report Submitted to the Faculty of Worcester Polytechnic Institute, (2016).

Google Scholar

[8] A. Karimah, M.R. Ridho, S.S. Munawar, D.S. Adi, Ismadi, R. Damayanti, B. Subiyanto, W. Fatriasari, A. Fudholi, A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations, J. Mater. Res. Technol. 13 (2021) 2442–2458.

DOI: 10.1016/j.jmrt.2021.06.014

Google Scholar

[9] B. O'Keeffe, S. Rout, Prosthetic rehabilitation in the lower limb, Indian J. Plast. Surg. 52 (2019) 134–144. https://doi.org/10.1055/s-0039-1687919.

Google Scholar

[10] D. Rouison, M. Sain, M. Couturier, Resin transfer molding of natural fiber reinforced composites: Cure simulation, Compos. Sci. Technol. 64 (2004) 629–644. https://doi.org/10.1016/j.compscitech.2003.06.001.

DOI: 10.1016/j.compscitech.2003.06.001

Google Scholar

[11] S. V. Joshi, L.T. Drzal, A.K. Mohanty, S. Arora, Are natural fiber composites environmentally superior to glass fiber reinforced composites?, Compos. Part A Appl. Sci. Manuf. 35 (2004) 371–376.

DOI: 10.1016/j.compositesa.2003.09.016

Google Scholar

[12] P. Madhu, M.R. Sanjay, S. Pradeep, K. Subrahmanya Bhat, B. Yogesha, S. Siengchin, Characterization of cellulosic fiber from Phoenix pusilla leaves as a potential reinforcement for polymeric composites, J. Mater. Res. Technol. 8 (2019) 2597–2604. https://doi.org/10.1016/j.jmrt.2019.03.006.

DOI: 10.1016/j.jmrt.2019.03.006

Google Scholar

[13] K. Li, S. Fu, H. Zhan, Y. Zhan, L.A. Lucia, Analysis of the chemical composition and morphological structure of banana pseudo-stem, BioResources. 5 (2010) 576–585.

Google Scholar

[14] N.H. Sari, J. Fajrin, Suteja, A. Fudholi, Characterisation of swellability and compressive and impact strength properties of corn husk fiber composites, Compos. Commun. 18 (2020) 49–54.

DOI: 10.1016/j.coco.2020.01.009

Google Scholar

[15] J. Kadhim Oleiwi, S. Jumaah Ahmed, Tensile and Buckling of Prosthetic Pylon Made from Hybrid Composite Materials, &Tech.Journal. 34 (2016).

DOI: 10.30684/etj.34.14a.9

Google Scholar

[16] S.A. Mechi, M. Al-Waily, A. Al-Khatat, The mechanical properties of the lower limb socket material using natural fibers: A review, in Mater. Sci. Forum, 2021. https://doi.org/10.4028/www.scientific.net/MSF.1039.473.

DOI: 10.4028/www.scientific.net/msf.1039.473

Google Scholar

[17] R. Che Me, R. Ibrahim, P. Md. Tahir, Natural based biocomposite material for prosthetic socket fabrication, ALAM CIPTA, Int. J. Sustain. Trop. Des. Res. Pract. 5 (2012).

Google Scholar

[18] R.C. Me, A. Cipta, R. Ibrahim, P.M. Tahir, NATURAL BASED BIOCOMPOSITE MATERIAL FOR PROSTHETIC SOCKET FABRICATION UNIVERSITI PUTRA MALAYSIA NATURAL BASED BIOCOMPOSITE MATERIAL FOR PROSTHETIC SOCKET FABRICATION, Researchgate.Net. 5 (2012).

Google Scholar

[19] N. Mohd Hawari, M. Jawaid, P. Md Tahir, R.A. Azmeer, S. of P.S.W.P.Q. and D.A. Below-Knee, M. Prosthetic Leg Socket Users, Disability and Rehabilitation: Assistive Technology (2016)Jawaid, P. Md Tahir, R.A. Azmeer, Case study: a survey of patient satisfaction with prosthesis quality and design among below-knee prosthetic leg socket users, Disabil. Rehabil. Assist. Technol. 12 (2017) 868–874.

DOI: 10.1080/17483107.2016.1269209

Google Scholar

[20] O.D. Samuel, S. Agbo, T.A. Adekanye, Assessing Mechanical Properties of Natural Fibre Reinforced Composites for Engineering Applications, J. Miner. Mater. Charact. Eng. 11 (2012) 780–784. https://doi.org/10.4236/jmmce.2012.118066.

DOI: 10.4236/jmmce.2012.118066

Google Scholar

[21] C. Young, H. Loshak, Elevated Vacuum Suspension Systems for Adults with Amputation: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines, (2020).

Google Scholar

[22] S. Hussein, A Study of Some Mechanical and Physical Properties for Palm Fiber/Polyester Composite, Eng. Technol. J. 38 (2020) 104–114. https://doi.org/10.30684/etj.v38i3b.598.

DOI: 10.30684/etj.v38i3b.598

Google Scholar

[23] H.M. Akil, M.F. Omar, A.A.M. Mazuki, S. Safiee, Z.A.M. Ishak, A. Abu Bakar, Kenaf fiber reinforced composites: A review, Mater. Des. 32 (2011) 4107–4121. https://doi.org/10.1016/j.matdes.2011.04.008.

DOI: 10.1016/j.matdes.2011.04.008

Google Scholar

[24] A.I. Campbell, S. Sexton, C.J. Schaschke, H. Kinsman, B. McLaughlin, M. Boyle, Prosthetic limb sockets from plant-based composite materials, Prosthet. Orthot. Int. 36 (2012) 181–189.

DOI: 10.1177/0309364611434568

Google Scholar

[25] S.C. Das, D. Paul, M.M. Fahad, M.K. Das, G.M.S. Rahman, M.A. Khan, Effect of Fiber Loading on the Dynamic Mechanical Properties of Jute Fiber Reinforced Polypropylene Composites, Adv. Chem. Eng. Sci. 08 (2018) 215–224. https://doi.org/10.4236/aces.2018.84015.

DOI: 10.4236/aces.2018.84015

Google Scholar

[26] M. Syduzzaman, M.A. Al Faruque, K. Bilisik, M. Naebe, Plant-based natural fiber reinforced composites: A review on fabrication, properties and applications, Coatings. 10 (2020) 1–34.

DOI: 10.3390/coatings10100973

Google Scholar

[27] J.S. Chiad, Study the impact behavior of the prosthetic lower limb lamination materials due to low-velocity impactor, in ASME 2014 12th Bienn. Conf. Eng. Syst. Des. Anal. ESDA 2014, 2014. https://doi.org/10.1115/ESDA2014-20007.

DOI: 10.1115/esda2014-20007

Google Scholar

[28] C.H. Hsu, C.H. Ou, W.L. Hong, Y.H. Gao, Comfort level discussion for prosthetic sockets with different fabricating processing conditions, Biomed. Eng. Online. 17 (2018) 1–17. https://doi.org/10.1186/s12938-018-0577-2.

DOI: 10.1186/s12938-018-0577-2

Google Scholar

[29] S.I. Salih, J.K. Oleiwi, H.M. Ali, Study Some Physical Properties of Polymeric Blends (Sr/ Pmma), Iraqi J. Mech. Mater. Eng. 18 (2019) 538–549. https://doi.org/10.32852/iqjfmme.v18i4.235.

DOI: 10.32852/iqjfmme.v18i4.235

Google Scholar

[30] J. Rahimi, Study of Properties of Banana Fiber Reinforced Study of Properties of Banana Fiber Reinforced, Int. J. Res. Eng. Technol. 03 (2014) 144–150.

DOI: 10.15623/ijret.2014.0311022

Google Scholar

[31] S.J. Pearson, J. McMahon, Lower Limb Mechanical Properties, Sport. Med. 42 (2012) 929–940. https://doi.org/10.2165/11635110-000000000-00000.

Google Scholar

[32] V. Tepe, C.M. Peterson, Full stride: Advancing the state of the art in lower extremity gait systems, Full Stride Adv. State Art Low. Extrem. Gait Syst. (2017) 1–244. https://doi.org/10.1007/978-1-4939-7247-0.

DOI: 10.1007/978-1-4939-7247-0

Google Scholar

[33] A.P. Irawan, I.W. Sukania, Gait Analysis of Lower Limb Prosthesis with Socket Made from Rattan Fiber Reinforced Epoxy Composites, Asian J. Appl. Sci. 3 (2015).

Google Scholar

[34] M. Mahjoob, A.K.A. Alameer, M.A. Al-shammari, Material Characterization and Fatigue Analysis of Lower Limb Prosthesis Materials, Assoc. Arab Univ. J. Eng. Sci. (PISSN 1726-4081). 25 (2018).

Google Scholar

[35] M.H. Nurhanisah, N. Saba, M. Jawaid, M.T. Paridah, Design of prosthetic leg socket from kenaf fiber based composites, Green Energy Technol. 0 (2017). https://doi.org/10.1007/978-3-319-49382-4_6.

DOI: 10.1007/978-3-319-49382-4_6

Google Scholar

[36] J. Odusote, V. Kumar, Mechanical Properties of Pineapple Leaf Fibre Reinforced Polymer Composites for Application as Prosthetic Socket, J. Eng. Technol. 6 (2016) 24–32. https://doi.org/10.21859/jet-06011.

DOI: 10.21859/jet-06011

Google Scholar

[37] A.P. Irawan, I.W. Sukania, Tensile Strength of Banana Fiber Reinforced Epoxy Composites Materials, Appl. Mech. Mater. 776 (2015) 260–263. https://doi.org/10.4028/www.scientific.net/amm.776.260.

DOI: 10.4028/www.scientific.net/amm.776.260

Google Scholar

[38] A.A. Alewi, Investigation of fatigue strength and stiffness/weight ratio of knee disarticulation prosthetic socket, (2018) 111.

Google Scholar

[39] M. Al-Waily, A.A. Deli, A.D. Al-Mawash, Z.A.A.A. Ali, Effect of natural sisal fiber reinforcement on the composite plate buckling behavior, Int. J. Mech. Mechatronics Eng. 17 (2017) 30–37.

Google Scholar

[40] M. Nematollahi, M. Karevan, M. Fallah, M. Farzin, Experimental and Numerical Study of the Critical Length of Short Kenaf Fiber Reinforced Polypropylene Composites, Fibers Polym. 21 (2020) 821–828. https://doi.org/10.1007/s12221-020-9600-x.

DOI: 10.1007/s12221-020-9600-x

Google Scholar

[41] G.A. Lichtwark, A.M. Wilson, Optimal muscle fascicle length and tendon stiffness for maximizing gastrocnemius efficiency during human walking and running, J. Theor. Biol. 252 (2008) 662–673. https://doi.org/10.1016/j.jtbi.2008.01.018.

DOI: 10.1016/j.jtbi.2008.01.018

Google Scholar

[42] A. Alavudeen, N. Rajini, S. Karthikeyan, M. Thiruchitrambalam, N. Venkateshwaren, Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation, Mater. Des. 66 (2015) 246–257. https://doi.org/10.1016/j.matdes.2014.10.067.

DOI: 10.1016/j.matdes.2014.10.067

Google Scholar

[43] A. Gowthami, K. Ramanaiah, A. V. Ratna Prasad, K. Hema Chandra Reddy, K. Mohana Rao, G. Sridhar Babu, Effect of silica on thermal and mechanical properties of sisal fiber reinforced polyester composites, J. Mater. Environ. Sci. 4 (2013) 199–204.

DOI: 10.1016/j.matdes.2013.02.056

Google Scholar

[44] Sulardjaka, D. Widhata, R. Ismail, Development of water hyacinth (Eceng gondok) as fiber reinforcement composite for prosthetics socket, AIP Conf. Proc. 2262 (2020). https://doi.org/10.1063/5.0015915.

DOI: 10.1063/5.0015915

Google Scholar

[45] S. Kumar, D. Zindani, S. Bhowmik, Investigation of Mechanical and Viscoelastic Properties of Flax- and Ramie-Reinforced Green Composites for Orthopedic Implants, J. Mater. Eng. Perform. 29 (2020) 3161–3171. https://doi.org/10.1007/s11665-020-04845-3.

DOI: 10.1007/s11665-020-04845-3

Google Scholar

[46] J.M. Khare, S. Dahiya, B. Gangil, L. Ranakoti, Influence of different resins on Physico-Mechanical properties of hybrid fiber reinforced polymer composites used in human prosthetics, Mater. Today Proc. 38 (2020) 345–349. https://doi.org/10.1016/j.matpr.2020.07.420.

DOI: 10.1016/j.matpr.2020.07.420

Google Scholar

[47] N.K. Faheed, J.K. Oleiwi, Q.A. Hamad, Effect of Weathering on Some Mechanical Properties of Prosthetic Composites, Mater. Today Proc. 57 (2022) 422–430. https://doi.org/10.1016/j.matpr.2021.12.434.

DOI: 10.1016/j.matpr.2021.12.434

Google Scholar