Terahertz Emission from Phosphor Centers in SiGe and SiGe/Si Semiconductors

Article Preview

Abstract:

Terahertz-range photoluminescence from silicon-germanium crystals and superlattices doped by phosphor has been studied under optical excitation by radiation from a mid-infrared CO2 laser at low temperature. SiGe crystals with a Ge content between 0.9 and 6.5 %, doped by phosphor with a concentration optimal for silicon laser operation, do not exhibit terahertz gain. On the contrary, terahertz-range gain of ~ 2.3 - 3.2 cm-1 has been observed for donor-related optical transitions in Si/SiGe strained superlattices at pump intensities above 100 kW/cm2.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

613-618

Citation:

Online since:

October 2007

Export:

Price:

[1] A. Borak, Science Vol. 308 (2005), p.638.

Google Scholar

[2] H. -W. Hübers, S. G. Pavlov and V. N. Shastin, Semicond. Sci. Technol. Vol. 20 (2005), p. S211.

Google Scholar

[3] R. Braunstein, Phys. Rev. Vol. 130 (1963), p.879.

Google Scholar

[4] D. J. Paul, Semocond. Sci. Technol. Vol. 19 (2004), p.75.

Google Scholar

[5] I. V. Altukhov, E. G. Chirkova, V. P. Sinis, M. S. Kagan, Yu. P. Gousev, S. G. Thomas, K. L. Wang, M. A. Odnoblyudov, and I. N. Yassievich, Appl. Phys. Lett. Vol. 79 (2001), p.3909.

DOI: 10.1063/1.1423771

Google Scholar

[6] S. A. Lynch, S. S. Dhillon, R. Bates, D. J. Paul, D. D. Arnone, D. J. Robbins, Z. Ikonic, R. W. Kelsall, P. Harrison, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn and A. Loudon, Materials Science and Engineering B. Vol. 89 (2002), p.10.

DOI: 10.1016/s0921-5107(01)00782-6

Google Scholar

[7] N. A. Bekin, V. N. Shastin. B. R. A. S. : Physics. Vol. 71 (2007), p.100.

Google Scholar

[8] R. Krüssmann, H. Vollmer, and R. Labusch, phys. stat. sol. (b) Vol. 118 (1983), p.275.

Google Scholar

[9] R. Kh. Zhukavin, V. V. Tsyplenkov, K. A. Kovalevsky, V. N. Shastin, S. G. Pavlov, U. Böttger, H. -W. Hübers, H. Riemann, N. V. Abrosimov, and N. Nötzel, Appl. Phys. Lett. Vol. 90 (2007), p.051101.

DOI: 10.1063/1.2431568

Google Scholar

[10] V. Ya. Aleshkin, N.A. Bekin. J. Phys.: Condensed Matter. Vol. 9, (1997), p.4841.

Google Scholar

[11] O. Madelung, Semiconductors - Basic Data, 2nd Ed., Springer, Berlin (1996).

Google Scholar

[12] N. V. Abrosimov, S. N. Rossolenko, V. Alex, A. Gerhardt, W. Schröder, J. Crystal Growth Vol. 166 (1996), p.657.

DOI: 10.1016/0022-0248(96)00036-x

Google Scholar

[13] R. Braunstein, A. R. Moore, and F. Herman, Phys. Rev. Vol. 109 (1958), p.695.

Google Scholar

[14] M. Asche and O. G. Sarbei, phys. stat. sol. (b) Vol. 103 (1981), p.11, and references therein.

Google Scholar

[15] C. Jagannath, Z. W. Grabowski, and A.K. Ramdas, Phys. Rev. B Vol. 23 (1981), p. (2082).

Google Scholar

[16] J. S. Christensen, H. H. Radamson, A. Yu. Kuznetsov, and B. G. Svensson, J. Appl. Phys. Vol. 94 (2003), p.6533.

Google Scholar

[17] R. Kh. Zhukavin, S. G. Pavlov, J. N. Hovenier, T. O. Klaassen, H. -W. Hübers, A. F. G. van der Meer and V. N. Shastin, In: Conf. Digest of Joint 29 th Int. Conf. Infrared and Millimeter Waves and 12th Int. Conf. Terahertz Electronics, Sept. 26 - Oct. 1, 2004, Karlsruhe, Germany, Ed. M. Thumm and W. Wiesbeck (2004).

DOI: 10.1109/icimw.2004.1422077

Google Scholar

[18] D. M. Larsen, Phys. Rev. B Vol. 67 (2003), p.165204.

Google Scholar