Adhesion between SRP and Masonry: Influence of Moist Condition of Specimens and Presence of Salts in the Substrate

Article Preview

Abstract:

In recent years, steel reinforced polymer (SRP) composites have emerged as a new technology for structural strengthening, and several researches have validated the effectiveness of SRP for masonry strengthening. Research has been carried out to study the bond behavior of SRP composites applied to a masonry substrate. However, how the moist and salt on masonry surface will affect bond, which is the weak link in real strengthening applications, is little known yet. This study aims at investigating the bond behavior of SRP composites applied to moist and salt-laden masonry blocks that were subjected to an artificial weathering protocol. Single-lap shear tests were conducted to determine the bond behavior, while ion chromatography provided the salts distribution of weathered specimens to interpret some results of the shear tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-188

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] Vaculik, J., Visintin, P., Burton, N.G., Griffith, M.C., Seracino, R., State-of-the-art review and future research directions for FRP-to-masonry bond research: Test methods and techniques for extraction of bond-slip behaviour. Constr Build Mater (2018) 183, 325-345.

DOI: 10.1016/j.conbuildmat.2018.06.103

Google Scholar

[2] Valluzzi, M.R., Modena, C., de Felice, G., Current practice and open issues in strengthening historical buildings with composites. Mater Struct (2014) 47, 1971-1985.

DOI: 10.1617/s11527-014-0359-7

Google Scholar

[3] De Santis, S., de Felice, G., Napoli, A., Realfonzo, R., Strengthening of structures with Steel Reinforced Polymers: A state-of-the-art review. Compos Part B Eng (2016) 104, 87-110.

DOI: 10.1016/j.compositesb.2016.08.025

Google Scholar

[4] Carloni, C., Santandrea, M., Imohamed, A.O.I., Determination of the interfacial properties of SRP strips bonded to concrete and comparison between single-Lap and notched beam tests. Eng Fract Mech (2017) 186, 80–104.

DOI: 10.1016/j.engfracmech.2017.09.020

Google Scholar

[5] Sneed, L.H., Ravazdezh, F., Santandrea, M., Imohamed, A.O.I., Carloni, C. A study of the compressive behavior of concrete columns confined with steel-FRP jackets using digital image analysis. Compos Struct (2017) 179, 195–207.

DOI: 10.1016/j.compstruct.2017.07.047

Google Scholar

[6] Grande, E., Imbimbo, M., Sacco, E., Investigation on the bond behavior of clay bricks reinforced with SRP and SRG strengthening systems. Mater Struct (2015) 48, 3755-3770.

DOI: 10.1617/s11527-014-0437-x

Google Scholar

[7] de Felice, G., Aiello, M.A., Bellini, A., Ceroni, F., De Santis, S., Garbin, E., Leone, M., Lignola, G.P., Malena, M., Mazzotti, C., Panizza, M., Valluzzi, M.R., Experimental characterization of composite-to-brick masonry shear bond. Mater Struct (2016) 49, 2581-2596.

DOI: 10.1617/s11527-015-0669-4

Google Scholar

[8] Napoli, A., de Felice, G., De Santis, S., Realfonzo, R., Bond behaviour of steel reinforced polymer strengthening systems. Compos Struct (2016) 152, 499-515.

DOI: 10.1016/j.compstruct.2016.05.052

Google Scholar

[9] Ceroni, F., de Felice, G., Grande, E., Malena, M., Mazzotti, C., Murgo, F., Sacco, E., Valluzzi, M.R., Analytical and numerical modeling of composite-to-brick bond. Mater Struct (2014) 47, 1987-2003.

DOI: 10.1617/s11527-014-0382-8

Google Scholar

[10] D'Altri, A.M., Carloni, C., de Miranda, S., Castellazzi, G. Numerical modeling of FRP strips bonded to a masonry substrate. Compos Struct (2018) 200, 420-433.

DOI: 10.1016/j.compstruct.2018.05.119

Google Scholar

[11] Valluzzi, M.R., Oliveira, D.V., Caratelli, A., Castori, G., Corradi, M., De Felice, G., Garbin, E., Garcia, D., Garmendia, L., Grande, E., Ianniruberto, U., Kwiecień, A., Leone, M., Lignola, G.P., Lourenço, P.B., Malena, M., Micelli, F., Panizza, M., Papanicolaou, C.G., Prota, A., Sacco, E., Triantafillou, T.C., Viskovic, A., Zaja̧c, B., Zuccarino, G., Round Robin Test for composite-to-brick shear bond characterization. Mater Struct (2012) 45, 1761-1791.

DOI: 10.1617/s11527-012-9883-5

Google Scholar

[12] Grande, E., Imbimbo, M., Sacco, E., Bond behavior of historical clay bricks strengthened with steel reinforced polymers (SRP). Materials (2010) 4, 585-600.

DOI: 10.3390/ma4030585

Google Scholar

[13] Gentilini, C., Franzoni, E., Santandrea, M., Carloni, C., Salt-induced deterioration on FRP-brick masonry bond. RILEM Bookseries (2019) 18, 1914-1921.

DOI: 10.1007/978-3-319-99441-3_205

Google Scholar

[14] Capozucca, R., Experimental FRP/SRP-historic masonry delamination. Compos Struct (2010) 92, 891-903.

DOI: 10.1016/j.compstruct.2009.09.029

Google Scholar

[15] Franzoni, E., Gentilini, C., Santandrea, M., Zanotto, S., Carloni, C., Durability of steel FRCM-masonry joints: effect of water and salt crystallization. Mater Struct (2017) 50, 201.

DOI: 10.1617/s11527-017-1070-2

Google Scholar

[16] EN 998-2 (2016) Specification for mortar for masonry - Part 2: Masonry mortar.

Google Scholar

[17] EN 772-1 (2015) Methods of test for masonry units - Part 1: Determination of compressive strength.

Google Scholar

[18] EN 12390-6 (2009) Testing hardened concrete. Tensile splitting strength of test specimens.

DOI: 10.3403/02128962

Google Scholar

[19] Kerakoll (2013) Technical data sheet GeoLite Gel. http://products.kerakoll.com/gestione/immagini/prodotti/00750geolite%20gel2013.pdf.

Google Scholar

[20] Franzoni, E., Gentilini, C., Graziani, G., Bandini, S., Compressive behaviour of brick masonry triplets in wet and dry conditions. Constr Build Mater (2015) 82, 45-52.

DOI: 10.1016/j.conbuildmat.2015.02.052

Google Scholar