Induction to tetraploidy in Pacific oysters (Crassostrea gigas)

  • Emílio Mateus Costa Melo Universidade Federal de Santa Catarina
  • Simone Sühnel Universidade Federal de Santa Catarina
  • Francisco Carlos da Silva Universidade Federal de Santa Catarina
  • Claudio Manoel Rodrigues de Melo Universidade Federal de Santa Catarina https://orcid.org/0000-0002-0969-7022
Palavras-chave: Polyploidy; pacific oysters; reproduction; biotechnology; genetic enhancement.

Resumo

As an alternative to the use of cytochalasin B (CB), 6-dimethylamino-purine (6-DMAP) and thermal shock (heat shock by increasing the temperature from 25 to 36ºC) could be used to induce tetraploidy in Pacific oyster (Crassostrea gigas) diploids. Induction was performed by applying shocks after elimination of the first polar corpuscle at the end of meiosis I. Ploidy rates were verified using flow cytometry. Tetraploid larvae were obtained using all inductor (6-DMAP, thermal shock and CB) treatments. No difference in the efficiency of tetraploidy induction was noted among 6-DMAP, thermal shock and CB. The number of D-larvae and their yield, determined by calculating the percentage of well-formed D-larvae in relation to the total number of larvae, was similar (p > 0.05) among the evaluated induction methods. We suggest that 6-DMAP and thermal shock should be used in tetraploidy induction protocols, thereby avoiding the use of CB, which is a harmful agent for both humans and the environment.

Downloads

Não há dados estatísticos.

Referências

Allen Jr., S. K., & Downing, S. L. (1990). Performance of triploid Pacific oysters, Crassostrea gigas: gametogenesis. Canadian Journal of Fisheries and Aquatic Sciences, 47(6), 1213-1222. DOI: http://doi.org/10.1139/f90-141

Allen Jr., S. K., & Downing, S. L. (1991). Consumers and ‘experts’ alike prefer the taste of sterile triploid over gravid diploid Pacific oysters (Crassostrea gigas, Thunberg, 1793). Journal Shellfish Research, 10, 19-22.

Allen Jr., S. K., Downing, S. L., & Chew, K. K. (1989). Hatchery manual for producing triploid oysters. Seattle, WA: University of Washington Press.

Beaumont, A. R., & Fairbrother, J. E. (1991). Ploidy manipulation in molluscan shellfish: a review. Journal of Shellfish Research, 10, 1–18.

Benabdelmouna, A., & Ledu, C. (2015). Autotetraploid Pacific oysters (Crassostrea gigas) obtained using normal diploid eggs: induction and impact on cytogenetic stability. Genome, 58(7), 333-348. DOI: http://doi.org/10.1139/gen-2015-0014

Desrosiers, R. R., Gérard, A., Peignon, J.-M., Naciri, Y., Dufresne, L., Morasse, J., ... Dubé, F. (1993). A novel method to produce triploids in bivalve molluscs by the use of 6-dimethylaminopurine. Journal of Experimental Marine Biology and Ecology, 170, 29-43. DOI: http://doi.org/10.1016/0022-0981(93)90127-A

Eudeline, B., Allen Jr., S. K., & Guo, X. (2000). Optimization of tetraploid induction in Pacific oysters, Crassostrea gigas, using first polar body as a natural indicator. Aquaculture, 187(1-2), 73-84. DOI: http://doi.org/10.1016/S0044-8486(00)00302-1

Galtsoff, P. S. (1964). The American oyster, Crassostrea virginica Gmelin. Fishery Bulletin, 64, 480.

Gosling, E. M., & Nolan, A. (1989). Triploidy induction by thermal shock in the Manila clam, Tapes semidecussatus. Aquaculture, 78(3-4), 223-228. DOI: http://doi.org/10.1016/0044-8486(89)90100-2

Guo, X., & Allen Jr., S. K. (1994a). Reproductive potential and genetics of triploid Pacific oysters, Crassostrea gigas (Thunberg). The Biological Bulletin, 187(3), 309-318. DOI: http://doi.org/10.2307/1542288

Guo, X., & Allen Jr., S. K. (1994b). Viable tetraploid Pacific oyster (Crassostrea gigas Thunburg) produced by inhibiting polar body I in eggs of triploids. Molecular Marine Biology and Biotechnology, 3(1), 42–50.

Guo, X., DeBrosse, G. A., & Allen Jr., S. K. (1996). All-triploid Pacific oysters (Crassostrea gigas Thunberg) produced by mating tetraploids and diploids. Aquaculture, 142(3-4), 149-161. DOI: http://doi.org/10.1016/0044-8486(95)01243-5

Guo, X., Wang, J., Landau, B.J., Li, L., Debrosse, G. A., & Buono, K. D. (2002). The successful production of tetraploid eastern oyster, Crassostrea virginica Gmelin. Journal of Shellfish Research, 21(1), 380–381.

McCombie, H., Cornette, F., & Beaumont, A. R. (2009). Short sharp shock produces viable tetraploids in crosses of diploid blue mussel Mytilus edulis. Aquaculture Research, 40(14), 1680-1682. DOI: http://doi.org/10.1111/j.1365-2109.2009.02273.x

McCombie, H., Ledu, C., Phelipot, P., Lapègue, S., Boudry, P., & Gérard, A. (2005). A complementary method for production of tetraploid Crassostrea gigas using crosses between diploids and tetraploids with cytochalasin B trataments. Marine Biotechnology, 7(4), 318-330. DOI: http://doi.org/10.1007/s10126-004-0440-2

Melo, E. M. C., Gomes, C. H. A. d. M., Silva, F. C. d., Sühnel, S., & Melo, C. M. R. d. (2015). Chemical and physical methods of triploidy induction in Crassostrea gigas (Thunberg, 1793). Boletim do Instituto de Pesca, 41(4), 889-898.

Melo, E. M. C., Sühnel, S., Oliveira, A. C. S. d., Lopes, B. d. O., Bachi, G. C., & Melo, C. M. R. d. (2020). Growth, mortality and reproductive traits of diploid and triploid Pacific oysters (Crassostrea gigas, Thunberg, 1793) in Southern Brazil. Aquaculture Research, 51(9), 3631-3640. DOI: http://doi.org/10.1111/are.14713

Muthiah, P., Thomas, P. C., & Mallia, J. V. (2006). Induced triploidy in the edible oyster, Crassostrea madrasensis by temperature shock. Journal of the Marine Biological Association of India, 48(2), 249-252.

Nell, J. A. (2002). Farming triploid oysters. Aquaculture, 210(1-4), 69-88. DOI: http://doi.org/10.1016/S0044-8486(01)00861-4

Nell, J. A., O'Riordan, P. J., & Ogburn, D. M. (2006). Consumer evaluation of diploid and triploid Pacific oysters subjected to high pressure treatment. Journal of Shellfish Research, 25(3), 1101-1104. DOI: http://doi.org/10.2983/0730-8000(2006)25[1101:CEODAT]2.0.CO;2

Nell, J. A., & Perkins, B. (2005). Studies on triploid oysters in Australia: farming potential of all-triploid Pacific oysters, Crassostrea gigas (Thunberg), in Port Stephens, New South Wales, Australia. Aquaculture Research, 36(6), 530-536. DOI: http://doi.org/10.1111/j.1365-2109.2005.01229.x

Normand, J., Ernande, B., Haure, J., McCombie, H. & Boudry, P. (2009). Reproductive effort and growth in Crassostrea gigas: comparison of young diploid and triploid oysters issued from natural crosses or chemical induction. Aquatic Biology, 7, 229-241. DOI: http://doi.org/ 10.3354/ab00190

Peachey, B. L., & Allen Jr., S. K. (2016). Evaluation of cytochalasin B and 6-dimethylaminopurine for tetraploidy induction in the Eastern oyster, Crassostrea virginica. Aquaculture, 450(1), 199-205. DOI: http://doi.org/10.1016/j.aquaculture.2015.07.034

Piferrer, F., Beaumont, A. R., Falguiére, J. C., Flajshans, M., Haffray, P., & Colombo, L. (2009). Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture, 293(3-4), 125-156. DOI: http://doi.org/10.1016/j.aquaculture.2009.04.036

Quillet, E., & Panelay, P. J. (1986). Triploidy induction by thermal shocks in the Japanese oyster, Crassostrea gigas. Aquaculture, 57(1-4), 271-279. DOI: http://doi.org/10.1016/0044-8486(86)90205-X

SAS Institute Inc. (2003). SAS OnlineDoc® 9.1. Cary, NC: SAS Institute.

Yang, H., & Guo, X. (2006a). Polyploid induction by heat shock-induced meiosis and mitosis inhibition in the dwarf surfclam, Mulinia lateralis Say. Aquaculture, 252(2-4), 171-182. DOI: http://doi.org/10.1016/j.aquaculture.2005.07.017

Yang, H., & Guo, X. (2006b). Tetraploid induction by inhibiting mitosis I with heat shock, cold shock, and nocadazole in the hard clam Mercenaria mercenaria (Linnaeus, 1758). Marine Biotechnology, 8(5), 501-510. DOI: http://doi.org/10.1007/s10126-005-6183-x

Publicado
2022-05-10
Como Citar
Melo, E. M. C., Sühnel, S., Silva , F. C. da, & Melo, C. M. R. de. (2022). Induction to tetraploidy in Pacific oysters (Crassostrea gigas). Acta Scientiarum. Animal Sciences, 44(1), e55337. https://doi.org/10.4025/actascianimsci.v44i1.55337
Seção
Aquicultura

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus