Skip to main content
Log in

Impact of ALD HfO2 Gate-Oxide Geometries on the Electrical Properties and Single-Event Effects of β-Ga2O3 MOSFETs: A Simulation Study

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A Sentaurus TCAD 2-D model of β-Ga2O3 metal-oxide semiconductor field-effect transistors (MOSFETs) with a polycrystalline HfO2 gate-oxide deposited using atomic layer deposition (ALD), which has a semiconductor-on-insulator (SOI) structure, is developed. The results of model shows good agreement with the DC and the AC characteristics of the fabricated device by incorporating proper parameters for the materials, as well as the device models. We also investigate and compare electrical performance of the devices with modified HfO2 gate-oxide geometries. With a reduced HfO2 coverage over the channel, the transconductance (gm) is enhanced, the threshold voltage (Vth) shifts toward a positive voltage, both of which are advantageous for device applications. Moreover, radiation effects during transient operation of the β-Ga2O3 MOSFETs are evaluated and compared for the fabricated and the modified oxide geometries by incorporating carrier generation models with heavy-ions and alpha particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Higashiwaki et al., Semicond. Sci. Technol. 31, 034001 (2016).

    Article  ADS  Google Scholar 

  2. S. J. Pearton et al., Appl. Phys. Rev. 5, 011301 (2018).

    Article  ADS  Google Scholar 

  3. M. Higashiwaki and G. H. Jessen, Appl. Phys. Lett. 112, 060401 (2018).

    Article  ADS  Google Scholar 

  4. B. J. Baliga, Appl. Phys. 53, 1759 (1982).

    Article  Google Scholar 

  5. Y. Tomm, P. Reiche, D. Klimm and T. Fukuda, J. Cryst. Growth 220, 510 (2000).

    Article  ADS  Google Scholar 

  6. Z. Galazka et al., ECS J. Solid State Sci. Technol. 6, Q3007 (2017).

    Article  Google Scholar 

  7. A. Kuramata et al., Jpn. J. Appl. Phys. 55, 1202A2 (2016).

    Article  Google Scholar 

  8. H. Aida et al., Jpn. J. Appl. Phys. 47, 8506 (2008).

    Article  ADS  Google Scholar 

  9. H. Zhou et al., J. Semicond. 40, 011803 (2019).

    Article  ADS  Google Scholar 

  10. S. J. Pearton, F. Ren, M. J. Tadjer and J. Kim, J. Appl. Phys. 124, 220901 (2018).

    Article  Google Scholar 

  11. Z. Galazka, Semicond. Sci. Technol. 33, 113001 (2018).

    Article  ADS  Google Scholar 

  12. M. J. Tadjer et al., ECS J. Solid State Sci. Technol. 8, Q3187 (2019).

    Article  Google Scholar 

  13. J. Zhang et al., APL Mater. 8, 020906 (2020).

    Article  ADS  Google Scholar 

  14. J. Kim et al., J. Mater. Chem. C 7, 10 (2019).

    Article  Google Scholar 

  15. M. H. Wong et al., Appl. Phys. Lett. 112, 023503 (2018).

    Article  ADS  Google Scholar 

  16. C. L. Tracy et al., Nucl. Instrum. Methods Phys. Res. 374, 40 (2016).

    Article  ADS  Google Scholar 

  17. G. Yang et al., ACSAppl.Mater.Interfaces 9, 46 (2017).

    Google Scholar 

  18. J. R. Srour and J. W. Palko, IEEE Trans. Nucl. Sci. 53, 3610 (2006).

    Article  ADS  Google Scholar 

  19. R. C. Baumann, IEEE Trans. Device Mater. Reliab. 5, 305 (2005).

    Article  Google Scholar 

  20. J. Ma and G. Yoo, IEEE Electron Device Lett. 40, 1317 (2019).

    Article  ADS  Google Scholar 

  21. T. Harwig, G. J. Wubs and G. J. Dirksen, Solid State Commun. 18, 1223 (1976).

    Article  ADS  Google Scholar 

  22. N. Kumar et al., IEEE Trans. Electron Devices 66, 5360 (2019).

    Article  ADS  Google Scholar 

  23. Sentaurus TM Device User Guide, Version O-2018.06, June 2018.

  24. D. M. Caughey and R. E. Thomas, Proc. IEEE 55, 2192 (1967).

    Article  Google Scholar 

  25. R. C. Alig and S. Bloom, Phys. Rev. Lett. 35, 1522 (1975).

    Article  ADS  Google Scholar 

  26. P. Bolshakov et al., Appl. Phys. Lett. 112, 253502 (2018).

    Article  ADS  Google Scholar 

  27. K. Aditya et al., IEEE Trans. Electron Devices 65, 4826 (2018).

    Article  ADS  Google Scholar 

  28. Y. Seo, M. Kang, J. Jeon and H. Shin, IEEE Trans. Electron Devices 66, 806 (2019).

    Article  ADS  Google Scholar 

  29. G. Kaushal et al., IEEE Trans. Electron Devices 59, 1563 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Soongsil University Research Fund (New Professor Support Research) in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geonwook Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, T.H., Yang, J.Y., Ma, J. et al. Impact of ALD HfO2 Gate-Oxide Geometries on the Electrical Properties and Single-Event Effects of β-Ga2O3 MOSFETs: A Simulation Study. J. Korean Phys. Soc. 77, 317–322 (2020). https://doi.org/10.3938/jkps.77.317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.317

Keywords

Navigation