Skip to main content
Log in

Neutron Detection Using a Gadolinium-Cathode Gas Electron Multiplier Detector

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A gas electron multiplier (GEM) detector with a gadolinium cathode has been developed to explore its potential application as a neutron detector. It consists of three standard-sized (10 × 10 cm2) GEM foils and a thin gadolinium plate as the cathode, which is used as a neutron converter. The neutron detection efficiencies were measured for two different cathode setups and for two different drift gaps. The thermal neutron source at the Korea Research Institute of Standards and Science (KRISS) was used to measure the neutron detection efficiency. Based on the neutron flux measured by KRISS, the neutron detection efficiency of our gadolinium GEM detector was 4.630 ± 0.034(stat.) ± 0.279(syst.)%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Mijnheer et al., Radiother. Oncol. 8, 3 (1987).

    Google Scholar 

  2. J. Daillant and A. Gibaud, X-ray and Neutron Reflectivity: Principles and Applications (Springer, Berlin, Heidelberg, 2002).

    Google Scholar 

  3. B. Ra, T. Jayakumar and M. Thavasimuthu, Practical Non-destructive Testing (Woodhead Publishing, Kalpakkam, 2002).

    Google Scholar 

  4. N. Fomin et al., Nucl. Instrum. Methods Phys. Res. A 773, (2015).

  5. M. Lindroos et al., Nucl. Instrum. Methods Phys. Res. B 269, 3258 (2011).

    Article  ADS  Google Scholar 

  6. CSNS collaboration, Nucl. Instrum. Methods Phys. Res. A 600, 10 (2009).

    Article  Google Scholar 

  7. W. Sauerwein and A. Zurlo, Eur. J. Cancer 38, 31 (2002).

    Article  Google Scholar 

  8. T. Kageji et al., Int. J. Radiat. Oncol. Biol. Phys. 65, 1446 (2006).

    Article  Google Scholar 

  9. Japanese Society of Neutron Capture Therpy, http://www.jsnct.jp/e/outline/index.html.

  10. DAWONSYS, Development of the accelerator based Boron Neutron Capture Therapy system for the cancer treatment within 1 hour therapeutic time, MOTIE (100063465).

  11. R. T. Kouzes et al., Nucl. Instrum. Methods Phys. Res. A 784, 172 (2015).

    Article  ADS  Google Scholar 

  12. H. D. Choi et al., Nucl. Sci. Eng. 177, 219 (2014).

    Article  Google Scholar 

  13. D. Pfeiffer et al., J. Instrum. 11, 5011 (2016).

    Article  Google Scholar 

  14. F. Sauli et al., Nucl. Instrum. Methods Phys. Res. A 396, 50 (1997).

    Article  ADS  Google Scholar 

  15. F. Sauli, Nucl. Instrum. Methods Phys. Res. A 805, 2 (2016).

    Article  ADS  Google Scholar 

  16. I. Park et al., New Phys.: Sae Mulli 64, 266 (2014)

    Google Scholar 

  17. CMS Collaboration, CMS Technical Design Report for the Muon Endcap GEM Upgrade, CERN-LHCC-2015-012, CMS-TDR-013, Sep. 2015.

    Google Scholar 

  18. T. Yano, Nucl. Instrum. Methods Phys. Res. A 845, 425 (2017).

    Article  ADS  Google Scholar 

  19. L. R. Cao et al., Nucl. Instrum. Methods Phys. Res. A 705, 36 (2013).

    Article  ADS  Google Scholar 

  20. Geant4 Physics Reference Manual, http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf.

  21. E. Mendoza and D. Cano-Ott, Update of the Evaluated Neutron Cross Section Libraries for the Geant4 Code (see also INDC(NDS)-0612) (INDC(NDS)–0758), International Atomic Energy Agency (IAEA) (2018).

    Google Scholar 

  22. Evaluated Nuclear Structure Data File (ENSDF), https://www.nndc.bnl.gov/nudat2/, Brookhaven National Laboratory.

  23. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How to Approach (Springer, Berlin, 1987).

    Book  Google Scholar 

  24. J. Kim et al., Radiat. Meas. 107, 73 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2018 Research Fund of the University of Seoul (Inkyu Park). Also, this research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea Government’s Ministry of Education, Science and Technology (MEST, 2017R1A2B4006644) (DongHyun Song, Sunyoung Yoo, Yechan Kang) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A06024977) (Kyungeon Choi). We also thank Dr. Jungho Kim of KRISS for his collaboration on the test beam.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DongHyun Song or Inkyu Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, D., Choi, K., Jeng, Y. et al. Neutron Detection Using a Gadolinium-Cathode Gas Electron Multiplier Detector. J. Korean Phys. Soc. 76, 961–966 (2020). https://doi.org/10.3938/jkps.76.961

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.961

Keywords

Navigation