Skip to main content
Log in

Holographic Dark Energy and Quantum Entanglement

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, we briefly review the holographic dark energy model and introduce the idea that dark energy is a kind of thermal energy related to the quantum entanglement of the vacuum across a cosmic future event horizon. The holographic dark energy model comes from a theoretical attempt to apply the holographic principle to the dark energy problem and follows the idea that the short distance cut-off or ultraviolet (UV) cut-off is related to the long distance cut-off or infrared (IR) cut-off. The IR cut-off relevant to dark energy is the size of the future event horizon. This model gives a holographic dark energy comparable to the observational data. Though this model is in good agreement with observational data, some problems (non-locality, circular logic, causality problem, etc.) exist due to the use of the future event horizon as a present IR cut-off. These problems of the holographic dark energy model are considerably resolved using action principle and equations of motion. Finally, we discuss the relation between quantum entanglement and dark energy which is connected to the more fundamental relation between entanglement and gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. R. R. Caldwell, R. Dave and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).

    Article  ADS  Google Scholar 

  4. I. Zlatev, L. M. Wang and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999).

    Article  ADS  Google Scholar 

  5. P. J. Steinhardt, L. M. Wang and I. Zlatev, Phys. Rev. D 59, 123504 (1999).

    Article  ADS  Google Scholar 

  6. T. Chiba, T. Okabe and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000).

    Article  ADS  Google Scholar 

  7. C. Armendariz-Picon, V. Mukhanov and P. J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000).

    Article  ADS  Google Scholar 

  8. C. Armendariz-Picon, V. Mukhanov and P. J. Steinhardt, Phys. Rev. D 63, 103510 (2001).

    Article  ADS  Google Scholar 

  9. C. Armendariz-Picon, T. Damour and V. Mukhanov, Phys. Lett. B 458, 209 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Garriga and V. Mukhanov, Phys. Lett. B 458, 219 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  11. R. R. Caldwell, Phys. Lett. B 545, 23 (2002).

    Article  ADS  Google Scholar 

  12. A. Kamenshchik, U. Moschella and V. Pasquier, Phys. Lett. B 511, 265 (2001).

    Article  ADS  Google Scholar 

  13. T. Padmanabhan, Phys. Rev. D 66, 021301 (2002).

    Article  ADS  Google Scholar 

  14. J. S. Bagla, H. K. Jassal and T. Padmanabhan, Phys. Rev. D 67, 063504 (2003).

    Article  ADS  Google Scholar 

  15. L. R. W. Abramo and F. Finelli, Phys. Lett. B 575, 165 (2003).

    Article  ADS  Google Scholar 

  16. J. M. Aguirregabiria and R. Lazkoz, Phys. Rev. D 69, 123502 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  17. Z. K. Guo and Y. Z. Zhang, JCAP 0408, 010 (2004).

    Article  ADS  Google Scholar 

  18. E. J. Copeland, M. R. Garousi, M. Sami and S. Tsujikawa, Phys. Rev. D 71, 043003 (2005).

    Article  ADS  Google Scholar 

  19. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).

    Article  ADS  Google Scholar 

  20. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  Google Scholar 

  21. T. Padmanabhan, Phys. Rep. 380, 235 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  22. E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).

    Article  ADS  Google Scholar 

  23. J. Frieman, M. Turner and D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385 (2008).

    Article  ADS  Google Scholar 

  24. R. R. Caldwell and M. Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59, 397 (2009).

    Article  ADS  Google Scholar 

  25. A. Silvestri and M. Trodden, Rept. Prog. Phys. 72, 096901 (2009).

    Article  ADS  Google Scholar 

  26. M. Li, X-D. Li, S. Wang and Y. Wang, Commun. Theor. Phys. 56, 525 (2011).

    Article  ADS  Google Scholar 

  27. K. Bamba, S. Capozziello, S. Nojiri and S. D. Odintsov, Astrophys. Space Sci. 342, 155 (2012).

    Article  ADS  Google Scholar 

  28. A. G. Cohen, D. B. Kaplan and A. E. Nelson, Phys. Rev. Lett. 82, 4971 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  29. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  30. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  ADS  Google Scholar 

  31. S. Minwalla, M. V. Raamsdonk and N. Seiberg, JHEP 0002, 020 (2000).

    Article  ADS  Google Scholar 

  32. H. S. Yang, Int. J. Mod. Phys. A 24, 4473 (2009)

    Article  ADS  Google Scholar 

  33. H. S. Yang, J. Mod. Phys. D 25, 1645010 (2016).

    Article  ADS  Google Scholar 

  34. J. Lee and H. S. Yang, J. Korean Phys. Soc. 65, 1754 (2014).

    Article  ADS  Google Scholar 

  35. M. Li, Phys. Lett. B 603, 1 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Li, X. D. Li, S. Wang and X. Zhang, JCAP 0906, 036 (2009).

    Article  ADS  Google Scholar 

  37. S. Wang, Y. Wang and Miao Li, Phys. Rept. 696, 1 (2017).

    Article  ADS  Google Scholar 

  38. M. Li and R-X. Miao, A New Model of Holographic Dark Energy with Action Principle, arXiv: 1210.0966.

  39. H-C. Kim, J. W. Lee and J. Lee, Europhys. Lett. 102, 29001 (2013).

    Article  ADS  Google Scholar 

  40. R. Muller and C. O. Lousto, Phys. Rev. D 52, 4512 (1995).

    Article  ADS  Google Scholar 

  41. M. Li, X-D. Li, C. Lin and Y. Wang, Commun. Theor. Phys. 51, 181 (2009).

    Article  ADS  Google Scholar 

  42. H. B. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).

    Article  ADS  Google Scholar 

  43. M. V. Fischetti, J. B. Hartle and B. L. Hu, Phys. Rev. D 20, 1757 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  44. J. B. Hartle and B. L. Hu, Phys. Rev. D 20, 1772 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  45. J. B. Hartle and B. L. Hu, Phys. Rev. D 21, 2756 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Li, R-X. Miao and Y. Pang, Phys. Lett. B 689, 55 (2010).

    Article  ADS  Google Scholar 

  47. M. Li, R-X. Miao and Y. Pang, Opt. Express 18, 9026 (2010).

    Article  ADS  Google Scholar 

  48. E. P. Verlinde, JHEP 04, 029 (2011).

    Article  ADS  Google Scholar 

  49. M. Li and Y. Wang, Phys. Lett. B 687, 243 (2010).

    Article  ADS  Google Scholar 

  50. Jae-Weon Lee, Hyeong-Chan Kim and J. Lee, J. Korean Phys. Soc. 66, 1025 (2015).

    Article  ADS  Google Scholar 

  51. J-W. Lee, J. Lee, H-C. Kim, JCAP 0708, 005 (2007).

    Article  ADS  Google Scholar 

  52. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2001).

    MATH  Google Scholar 

  53. T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  54. M. Van Raamsdonk, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015) (Boulder, CO, USA, June 1 - 26, 2015), p. 297.

    Google Scholar 

  55. R. Brustein, Phys. Rev. Lett. 84, 2072 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  56. T. Takayanagi, Class. Quant. Grav. 29, 153001 (2012).

    Article  ADS  Google Scholar 

  57. J-W. Lee, H-C. Kim and J. Lee, J. Korean Phys. Soc. 63, 1094 (2013).

    Article  ADS  Google Scholar 

  58. T. Faulkner et al., JHEP 03, 051 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  59. E. Oh, I. Y. Park and S-J. Sin, Phys. Rev. D 98, 026020 (2018).

    Article  ADS  Google Scholar 

  60. M. Van Raamsdonk, Gen. Rel. Grav. 42, 2323 (2010), [Int. J. Mod. Phys. D 19, 2429 (2010)].

    Article  ADS  Google Scholar 

  61. E. Martin-Martinez and N. C. Menicucci, Class. Quant. Grav. 29, 224003 (2012).

    Article  ADS  Google Scholar 

  62. E. Martin-Martinez and N. C. Menicucci, Class. Quant. Grav. 31, 214001 (2014).

    Article  ADS  Google Scholar 

  63. Y. Nambu, Phys. Rev. D 78, 044023 (2008).

    Article  ADS  Google Scholar 

  64. G.’t Hooft, Salam-festschrifft (World Scientific, Singapore, 1993), Conf. Proc. C 930308, 284 (1993).

    Google Scholar 

  65. L. Susskind, J. Math. Phys. 36, 6377 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  66. H-C. Kim, J-W. Lee and J. Lee, Mod. Phys. Lett. A 25, 1581 (2010).

    Article  ADS  Google Scholar 

  67. H-C. Kim, J-W. Lee and J. Lee, JCAP 0808, 035 (2008).

    Article  ADS  Google Scholar 

  68. J-W. Lee, Talk given at the KIAS Workshop on Quantum Information Sciences Aug. 19, 2009, Seoul, Korea.

  69. A. R. Liddle and D. H. Lyth, Cosmological inflation and large-scale structure (Cambridge University Press, New York, 2000).

    Book  MATH  Google Scholar 

  70. S. Weinberg, Gravitation and Cosmology (John Wiley and Sons, Inc. New York, 1972).

    Google Scholar 

  71. E. W. Kolb and M. Turner, The Early Universe (Addison-Wesley, Redwood City, 1990).

    MATH  Google Scholar 

  72. T. Padmanabhan, Theoretical Astrophysics (Cambridge Univ. Press, New York, 2000).

    Book  MATH  Google Scholar 

  73. E. Hubble, PNAS 15, 168 (1929).

    Article  ADS  Google Scholar 

  74. D. Huterer and G. Starkman, Phys. Rev. Lett. 90, 031301 (2003).

    Article  ADS  Google Scholar 

  75. D. Huterer and A. Cooray, Phys. Rev. D 71, 023506 (2005).

    Article  ADS  Google Scholar 

  76. Q-G. Huang, M. Li, X-D. Li and S. Wang, Phys. Rev. D 80, 083515 (2009).

    Article  ADS  Google Scholar 

  77. S. Wang, X-D. Li and M. Li, Phys. Rev. D83, 023010 (2011).

    ADS  Google Scholar 

  78. X-D. Li, S. Li, S. Wang, W-S. Zhang, Q-G. Huang and M. Li, JCAP 1107, 011 (2011).

    Article  ADS  Google Scholar 

  79. S. Wang, Y. Hu, M. Li and N. Li, Astrophys. J. 821, 60 (2016).

    Article  ADS  Google Scholar 

  80. T. Padmanabhan, Class. Quant. Grav. 19, L167 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  81. T. Padmanabhan, Class. Quant. Grav. 22, L107 (2005).

    Article  ADS  Google Scholar 

  82. S. D. H. Hsu, Phys. Lett. B 594, 13 (2004).

    Article  ADS  Google Scholar 

  83. Q-G. Huang and M. Li, JCAP 0408, 013 (2004).

    Article  ADS  Google Scholar 

  84. Q-G. Huang and Y. Gong, JCAP 0408, 006 (2004).

    Article  ADS  Google Scholar 

  85. S. Wang, J-J. Geng, Y-L. Hu and X. Zhang, Sci. China Phys. Mech. Astron. 58, 019801 (2015).

    Google Scholar 

  86. R-G. Cai, Phys. Lett. B 657, 228 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  87. Y. Gong and J. Liu, J. Cosmol. Astroptl. Phys. 0809, 010 (2008).

    Article  ADS  Google Scholar 

  88. Y. Gong, Phys. Rev. D 70, 064029 (2004).

    Article  ADS  Google Scholar 

  89. J. Liu, Y. Gong and X. Chen, Phys. Rev. D 81, 083536 (2010).

    Article  ADS  Google Scholar 

  90. S. Nojiri and S. D. Odintsov, Gen. Rel. Grav. 38, 1285 (2006).

    Article  ADS  Google Scholar 

  91. H. Wei and R-G. Cai, Phys. Lett. B 660, 113 (2008).

    Article  ADS  Google Scholar 

  92. M. Ito, Europhys. Lett. 71, 712 (2005).

    Article  ADS  Google Scholar 

  93. R. Horvat, Phys. Rev. D 70, 087301 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  94. D. Pavon and W. Zimdahl, Phys. Lett. B 628, 206 (2005).

    Article  ADS  Google Scholar 

  95. H-C. Kim, J-W. Lee and J. Lee, Phys. Lett. B 661, 67 (2008).

    Article  ADS  Google Scholar 

  96. P. C. W. Davies, Class. Quant. Grav. 5, 1349 (1988); Class. Quant. Grav. 4, L225 (1987).

    Article  ADS  Google Scholar 

  97. M. D. Pollock and T. P. Singh, Class. Quant. Grav. 65, 901 (1989).

    Article  ADS  Google Scholar 

  98. M. Li, X. D. Li, J. Meng and Z. Zhang, Phys. Rev. D 88, 023503 (2013).

    Article  ADS  Google Scholar 

  99. J. L. Cui and J. F. Zhang, Eur. Phys. J. C 74, 2849 (2014).

    Article  ADS  Google Scholar 

  100. A. Rozas-Fernndez, Eur. Phys. J. C 74, 3019 (2014).

    Article  ADS  Google Scholar 

  101. C. Gao, F. Wu, X. Chen and Y-G. Shen, Phys. Rev. D 79, 043511 (2009).

    Article  ADS  Google Scholar 

  102. H. Reeh and S. Schlieder, Nuovo Cimento 22, 1051 (1961).

    Article  Google Scholar 

  103. S. Summers and R. Werner, Phys. Lett. A 110, 257 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  104. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  105. R. Müller and C. O. Lousto, Phys. Rev. D 52, 4512 (1995).

    Article  ADS  Google Scholar 

  106. E. Bianchi, Horizon entanglement entropy and universality of the graviton coupling, arXiv:1211.0522.

  107. D. A. Easson, P. H. Frampton and G. Smoot, Phys. Lett. B 696, 273 (2011).

    Article  ADS  Google Scholar 

  108. M. Li and Y. Wang, Phys. Lett. B 687, 243 (2010).

    Article  ADS  Google Scholar 

  109. Y. Zhang, Y-G. Gong and Z-H. Zhu, Int. J. Mod. Phys. D 20, 1505 (2011).

    Article  ADS  Google Scholar 

  110. S-W. Wei, Y-X. Liu and Y-Q. Wang, Commun. Theor. Phys. 56, 455 (2011).

    Article  ADS  Google Scholar 

  111. E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 192, 18 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungjai Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JW., Kim, HC. & Lee, J. Holographic Dark Energy and Quantum Entanglement. J. Korean Phys. Soc. 74, 1–11 (2019). https://doi.org/10.3938/jkps.74.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.1

Keywords

Navigation