Skip to main content
Log in

Fabrication and evaluation of novel rabbit model cardiovascular simulator with 3D printer

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Simulators allow researchers to study the hemodynamics of the cardiovascular system in a reproducible way without using complicated equations. Previous simulators focused on heart functions. However, a detailed model of the vessels is required to replicate the pulse wave of the arterial system. A computer simulation was used to simplify the arterial branch because producing every small artery is neither possible nor necessary. A 3D-printed zig was used to make a hand-made arterial tree. The simulator that was developed was evaluated by comparing its results to in-vivo data, in terms of the hemodynamic parameters (waveform, augmentation index, impedance, etc.) that were measured at three points: the ascending aorta, the thoracic aorta, and the brachiocephalic artery. The results from the simulator showed good agreement with the in-vivo data. Therefore, this simulator can be used as a research tool for the cardiovascular study of animal models, specifically rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Kaptchuk, The Web That Has No Weaver: Understanding Chinese Medicine (Contemporary Books, Chicago, 2000).

    Google Scholar 

  2. S. Tan, K. Tillisch and E. Mayer, Evid. Based Complement Alternat. Med. 1, 35 (2004).

    Article  Google Scholar 

  3. K. W. Gwak, B. E. Paden, J. F. Antaki and I. S. Ahn, IEEE Trans. Biomed. Eng. 57, 1176 (2010).

    Article  Google Scholar 

  4. A. P. Avolio, Med. Biol. Eng. Comput. 18, 709 (1980).

    Article  Google Scholar 

  5. P. Segers, F. Dubois, D. De Wachter and P. Verdonck, Cardiovasc. Eng. 3, 48 (1998).

    Google Scholar 

  6. D. Timms, M. Hayne, K. McNeil and A. Galbraith, Artif. Organs 29, 564 (2005).

    Article  Google Scholar 

  7. G. M. Pantalos, S. C. Koenig, K. J. Gillars, G. A. Giridharan and D. L. Ewert, ASAIO J. 50, 37 (2004).

    Article  Google Scholar 

  8. T. I. Marx, B. R. Baldwin and C. F. Kittle, J. Thorac. Cardiovasc. Surg. 38, 412 (1959).

    Google Scholar 

  9. ViVitro Labs Inc., Endovascular Simulator http://vivit rolabs.com/product/endovascular-ev-simulator/.

  10. UNITEDBIOLOGICS, Aorta with Radial Access, http://www.unitedbiologics.com/aorta-radial-access.html.

  11. Elastrat Sàrl, Thoracic and Abdominal soft silicon model, http://www.elastrat.ch/models/.

  12. N. Westerhof, N. Stergiopulos and I. M. M. Noble, Snapshots of Hemodynamics, 2nd ed. (Springer, New York, 2010).

    Book  Google Scholar 

  13. A. P. Avolio, M. F. O’rourke, K. Mang, P. T. Bason and B. S. Gow, Am. J. Physiol. 230, 868 (1976).

    Google Scholar 

  14. J. Alastruey, S. R. Nagel, B. A. Nier, A. A. Hunt, P. D. Weinberg and J. Peiró, J. Biomech. 42, 2116 (2009).

    Article  Google Scholar 

  15. K. S. Meir and E. Leitersdorf, Arterioscler. Thromb. Vasc. Biol. 24, 1006 (2004).

    Article  Google Scholar 

  16. G. S. Getz and C. A. Reardon, Arterioscler. Thromb. Vasc. Biol. 26, 242 (2006).

    Article  Google Scholar 

  17. S. Zadelaar, R. Kleemann, L. Verschuren, J. de Vries-Van der Weij, J. van der Hoorn, H. M. Princen and T. Kooistra, Arterioscler. Thromb. Vasc. Biol. 27, 1706 (2007).

    Article  Google Scholar 

  18. A. P. Avolio, Ph.D. Dissertation (University of New South Wales, 1976).

    Google Scholar 

  19. D. Legendre, J. Fonseca, A. Andrade, J. F. Biscegli, R. Manrique, D. Guerrino, A. K. Prakasan, J. P. Ortiz and J. C. Lucchi, Artif. Organs 32, 461 (2008).

    Article  Google Scholar 

  20. C. J. Mills, I. T. Gabe, J. H. Gault, D. T. Mason, J. Ross, E. Braunwald and J. P. Shillingford, Cardiovasc. Res. 4, 405 (1970).

    Article  Google Scholar 

  21. M. I. Nobel, I. T. Gabe, D. Trenchard and A. Guz. Cardiovasc. Res. 1, 9 (1967).

    Article  Google Scholar 

  22. W. W. Nichols and M. F. O’Rourke, McDonald’s blood flow in arteries; theoretical, experimental and clinical principles, 5th ed. (Oxford University Press, New York, 2005).

    Google Scholar 

  23. W. R. Milnor, Hemodynamics, 2nd ed. (Williams & Wilkins, Baltimore & London, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hoon Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, M., Lee, MW., Seo, SY. et al. Fabrication and evaluation of novel rabbit model cardiovascular simulator with 3D printer. Journal of the Korean Physical Society 70, 647–655 (2017). https://doi.org/10.3938/jkps.70.647

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.647

Keywords

Navigation