Skip to main content
Log in

Mechanical and thermoelectric properties of Bi2−xSbxTe3 prepared by using encapsulated melting and hot pressing

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Bi2-xSbxTe3 (x = 1.4 - 1.7) solid solutions were synthesized by using encapsulated melting (EM) and were consolidated by using hot pressing (HP). The lattice constants decreased with increasing Sb content, which indicated that solid solutions were successfully synthesized. The relative densities of all the hot-pressed specimens were higher than 97.9 %. X-ray diffraction patterns, pole figures and electron backscattered diffraction spectra of all the hot-pressed specimens indicated randomly oriented textures. Very low values of the orientation factor (F) were obtained, Fmin = 0.008 for Bi0.4Sb1.6Te3 hot-pressed at 673 K and Fmax = 0.115 for Bi0.4Sb1.6Te3 hot-pressed at 723 K, which implied that the microstructures were highly isotropic. A bending strength of 46 MPa and a Vickers hardness of 94 Hv were attained for Bi0.4Sb1.6Te3 hot-pressed at 648 K. However, the mechanical properties were degraded with increasing HP temperature owing to grain growth. An increased HP temperature did not affect the electrical properties significanctly. The carrier concentration increased with increasing Sb content, and the specimen with x = 1.4 showed nondegenerate semiconductor behavior whereas those with x ≥ 1.5 behaved as degenerate semiconductors. All specimens showed p-type conduction, which was confirmed from the positive signs of the Seebeck coefficient and the Hall coefficient. The increased Sb content caused a shift in the peak values of the Seebeck coefficient to higher temperatures and an enhancement of the power factor. The electronic thermal conductivity decreased, but the lattice thermal conductivity increased, with increasing Sb content. The lowest theraml conductivity of 0.83 Wm -1K -1 was obtained at 373 K for Bi0.4Sb1.6Te3. The maximum dimensionless figure of merit, ZT max = 1.1, was achieved at 323 K for Bi0.4Sb1.6Te3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964), p. 43.

    Book  Google Scholar 

  2. H. Scherrer and S. Scherrer, Handbook of Thermoelectrics, edited by D. M. Rowe (CRC Press, London, 1995), chap. 19.

  3. H. J. Goldsmid, J. Appl. Phys. 32, 2198 (1961).

    Article  ADS  Google Scholar 

  4. L. V. Prokof’eva, D. A. Pshenai-Severin, P. P. Konstan-Tinov and A. A. Shabaldin, Semicond. 43, 1155 (2009).

    Article  Google Scholar 

  5. D. Vasilevskiy, A. Sami, J. M. Simard and R. Masut, J. Appl. Phys. 92, 2610 (2002).

    Article  ADS  Google Scholar 

  6. S. Y. Wang, W. J. Xie, H. Li and X. F. Tang, Intermet. 19, 1024 (2011).

    Article  Google Scholar 

  7. W. J. Xie et al., Nano Lett. 10, 3283 (2010).

    Article  ADS  Google Scholar 

  8. Y. Xiao, J. Yang, G. Li, M. Liu, L. Fu, Y. Luo, W. Li and J. Peng, Intermet. 50, 20 (2014).

    Article  Google Scholar 

  9. F. K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959).

    Article  Google Scholar 

  10. D. B. Hyun, T. S. Oh, J. S. Hwang and J. D. Shim, Scrip. Mater. 44, 455 (2001).

    Article  Google Scholar 

  11. M. L. Lwin, S. M. Yoon, B. Madavali, C. H. Lee and S. J. Hong, J. Korean Powder Metall. 23, 120 (2016).

    Article  Google Scholar 

  12. S. Miura, Y. Sato, K. Fukuda, K. Nishimura and K. Ikeda, Mater. Sci. Eng. 277, 244 (2000).

    Article  Google Scholar 

  13. H. S. Shin, H. P. Ha, D. B. Hyun, J. D. Shim and D. H. Lee, J. Phys. Chem. Sol. 58, 671 (1997).

    Article  ADS  Google Scholar 

  14. J. H. Son, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, M. H. Kim and H. W. Lee, J. Alloys Compd. 566, 168 (2013).

    Article  Google Scholar 

  15. F. Yu, J. Zhang, D. Yu, J. He, Z. Liu, B. Xu and Y. Tian, J. Appl. Phys. 105, 094303 (2009).

    Article  ADS  Google Scholar 

  16. G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).

    Article  ADS  Google Scholar 

  17. L. Hu, H. Gao, X. Liu, H. Xie, J. Shen, T. Zhu and X. Zhao, J. Mater. Chem. 22, 16484 (2012).

    Article  Google Scholar 

  18. H. Cailat, A. Borshchevsky and J. P. Fleurial, J. Appl. Phys. 80, 4442 (1996).

    Article  ADS  Google Scholar 

  19. S. K. Bux, J. P. Fleurial and R. B. Kaner, Chem. Commun. 46, 8311 (2010).

    Article  Google Scholar 

  20. F. R. Sie, C. S. Hwang, C. H. Kuo, Y. W. Chou, C. H. Yeh, H. Y. Ho, Y. L. Lin and C. H. Lan, J. Electron. Mater. 44, 6 (2015).

    Article  Google Scholar 

  21. X. Fan, F. Yang, Z. Rong, X. Cai and G. Li, Ceram. Intl. 41, 6817 (2015).

    Article  Google Scholar 

  22. H. Kim et al., J. Electron. Mater. 12, 290 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, WJ., Kim, IH. Mechanical and thermoelectric properties of Bi2−xSbxTe3 prepared by using encapsulated melting and hot pressing. Journal of the Korean Physical Society 69, 1328–1334 (2016). https://doi.org/10.3938/jkps.69.1328

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1328

Keywords

Navigation